Skip to content

Latest commit

 

History

History
212 lines (180 loc) · 8.94 KB

README.md

File metadata and controls

212 lines (180 loc) · 8.94 KB

van der Waerden Numbers

For an integer k > 1, a k-term arithmetic progression (k-AP for short) is a sequence x(1),...,x(k) of integers such that there is a constant d where d = x(i + 1) - x(i) for all i in {1,...,k-1}.

For integers k(1),...,k(t), the t-color van der Waerden number vdw(k(1),...,k(t)) is the minimum number N such that every coloring c of {1,...,N} using colors {1,...,t} contains a k(i)-AP of color i for some color. We call these monochromatic APs.

For the input values, we refer to a coloring that avoids these monochromatic APs as a valid coloring.

Computing

To compute van der Waerden numbers, we have the following approaches.

Z3 SMT Solver

Using the Z3 Satisfiability Modulo Theory (SMT) Solver, we can find existence of valid colorings for N below the van der Waerden number, and prove nonexistence of valid colorings beyond the van der Waerden number.

We use Python scripts to generate the constraint systems for Z3, and use the Python API to solve these systems. If you prefer to instead verify the systems that are already created, you can see the vdw-*.z3 files in the data folder.

For two colors, use vdw-2.py k1 k2 to determine the van der Waerden number vdw(k1,k2). Optionally, use vdw-2.py k1 k2 n to start the computation at the value n. This approach creates an integer program where each position i in {1,...,n} has a 0-1 variable x(i) and we guarantee the APs are not monochromatic by bounding their sum to be at least 1 or at most k1-1. This is more efficient than the approach required for three or more colors.

For three or more colors, use vdw-t.py t k1 ... kt <n> to determine the van der Waerden number vdw(k1,...,kt); optionally start the computation at the value n. This approach uses an integer program where each position i in {1,...,n} has t 0-1 variables x(i,c) where c is a color value in {0,...,t-1}. We ensure the sum of x(i,0) + ... + x(i,t-1) is exactly 1 to guarantee a unique color on each position, and bound the sum across each AP is one below its length in that color.

Results

In the tables below, we list the van der Waerden numbers whose exact values are known. We reference the original prover by marking the reference next to the value. We use TODO to mark numbers that are not verified by the Small Numbers project.

Two Colors

k1 k2 vdw(k1,k2) Proven By
3 3 9 [C70]
3 4 18 [C70]
3 5 22 [C70]
3 6 32 [C70]
3 7 46 [C70]
3 8 58 [BO79]
3 9 77 [BO79]
3 10 97 [BO79]
3 11 114 [LRC05]
3 12 135 [LRC05]
3 13 160 [LRC05]
3 14 186 [K06] TODO
3 15 218 [K06] TODO
3 16 238 [K06] TODO
3 17 279 [A10] TODO
3 18 312 [A10] TODO
3 19 349 [AKS14] TODO
4 4 35 [C70]
4 5 55 [C70]
4 6 73 [BO79]
4 7 109 [B83]
4 8 146 [K06]
4 9 309 [A12] TODO
5 5 178 [SS78]
5 6 206 [K06] TODO
5 7 260 [A13] TODO
6 6 1,132 [KP08] TODO

Three Colors

k1 k2 k3 vdw(k1,k2,k3) Proven By
2 3 3 14 [B74]
2 3 4 21 [B74]
2 3 5 32 [B74]
2 3 6 40 [B74]
2 3 7 55 [LRC05]
2 3 8 72 [K06]
2 3 9 90 [A09]
2 3 10 108 [A09]
2 3 11 129 [A09]
2 3 12 150 [A09] TODO
2 3 13 171 [A09] TODO
2 3 14 202 [K12] TODO
2 4 4 40 [B74]
2 4 5 71 [B74]
2 4 6 83 [LRC05] TODO
2 4 7 119 [K06] TODO
2 4 8 157 [K12] TODO
2 5 5 180 [A09] TODO
2 5 6 246 [K12] TODO
3 3 3 27 [C70]
3 3 4 51 [BO79]
3 3 5 80 [LRC05]
3 3 6 107 [A09] TODO
3 4 4 89 [LRC05] TODO
4 4 4 293 [K12] TODO

Four Colors

k1 k2 k3 k4 vdw(k1,k2,k3,k4) Proven By
2 2 3 3 17 [B74]
2 2 3 4 24 [B74]
2 2 3 5 43 [B74]
2 2 3 6 48 [LRC05]
2 2 3 7 65 [LRC05]
2 2 3 8 83 [A09]
2 2 3 9 99 [A09]
2 2 3 10 119 [A09] TODO
2 2 3 11 141 [S19] TODO
2 2 4 4 53 [B74] TODO
2 2 4 5 75 [A09] TODO
2 2 4 6 93 [A09] TODO
2 2 4 7 143 [K12] TODO
2 3 3 3 40 [B74] TODO
2 3 3 4 60 [LRC05] TODO
2 3 3 5 86 [A09] TODO
3 3 3 3 76 [BO79] TODO

Five Colors

k1 k2 k3 k4 k5 vdw(k1,k2,k3,k4,k5) Proven By
2 2 2 3 3 20 [LRC05]
2 2 2 3 4 29 [A09]
2 2 2 3 5 44 [A09]
2 2 2 3 6 56 [A09]
2 2 2 3 7 72 [A09] TODO
2 2 2 3 8 88 [A09]
2 2 2 3 9 107 [K12] TODO
2 2 2 4 4 54 [A09]
2 2 2 4 5 79 [A09] TODO
2 2 2 4 6 101 [K12] TODO
2 2 3 3 3 41 [LRC05]
2 2 3 3 4 63 [A09] TODO

References

[A09] Tanbir Ahmed, "Some new van der Waerden numbers and some van der Waerden-type numbers" Integers 9: (2009) A6.

[A10] Tanbir Ahmed, "Two new van der Waerden numbers w(2;3,17) and w(2;3,18)" Integers 10: (2010) pp. 369–377.

[AKS14] Tanbir Ahmed, Oliver Kullmann, and Hunter Snevily, "On the van der Waerden numbers w(2;3,t)". Discrete Appl. Math. 174: (2014) pp. 27–51.

[BO79] Michael D. Beeler and Patrick E O'Neil, "Some new van der Waerden numbers" Discrete Math. 28 (2): (1979) pp. 135–146.

[B74] T. C. Brown "Some new van der Waerden numbers (preliminary report)". Notices of the American Mathematical Society 21 (1974) A–432.

[C70] Vašek Chvátal. "Some unknown van der Waerden numbers" In Guy, Richard; Hanani, Haim; Sauer, Norbert; et al. Combinatorial Structures and Their Applications (1970) pp. 31–33.

[K06] Michal Kouril, A Backtracking Framework for Beowulf Clusters with an Extension to Multi-Cluster Computation and Sat Benchmark Problem Implementation (Ph.D. thesis). University of Cincinnati (2006).

[K12] Michal Kouril "Computing the van der Waerden number W(3,4)=293" Integers 12: (2012) A46.

[KP08] Michal Kouril and Jerome L. Paul, "The Van der Waerden Number W(2,6) is 1132" Experimental Mathematics 17 (1): (2008) pp. 53–61.

[LRC05] Bruce Landman, Aaron Robertson, and Clay Culver, "Some New Exact van der Waerden Numbers" Integers 5 (2): (2005) A10.

[S09] Pascal Schweitzer, Problems of Unknown Complexity, Graph isomorphism and Ramsey theoretic numbers (Ph.D. thesis) U. des Saarlandes (2009).