From 7afb69c9cc7d03e8e15781d158231bd0cd4e3734 Mon Sep 17 00:00:00 2001 From: Manas Karekar Date: Tue, 7 May 2019 06:24:41 -0400 Subject: [PATCH] Enable syntax highlighting in all python code snippets (#268) --- README-ja.md | 4 ++-- README-zh-Hans.md | 4 ++-- README-zh-TW.md | 4 ++-- README.md | 6 +++--- solutions/system_design/mint/README.md | 10 +++++----- solutions/system_design/pastebin/README.md | 4 ++-- solutions/system_design/query_cache/README.md | 8 ++++---- solutions/system_design/sales_rank/README.md | 2 +- solutions/system_design/social_graph/README.md | 10 +++++----- solutions/system_design/web_crawler/README.md | 8 ++++---- 10 files changed, 30 insertions(+), 30 deletions(-) diff --git a/README-ja.md b/README-ja.md index c3d0efde72b..2ace2591fc4 100644 --- a/README-ja.md +++ b/README-ja.md @@ -1166,7 +1166,7 @@ Redisはさらに以下のような機能を備えています: * エントリをキャッシュに追加します * エントリを返します -``` +```python def get_user(self, user_id): user = cache.get("user.{0}", user_id) if user is None: @@ -1209,7 +1209,7 @@ set_user(12345, {"foo":"bar"}) キャッシュコード: -``` +```python def set_user(user_id, values): user = db.query("UPDATE Users WHERE id = {0}", user_id, values) cache.set(user_id, user) diff --git a/README-zh-Hans.md b/README-zh-Hans.md index f1a2f9e3cd1..c8847c30876 100644 --- a/README-zh-Hans.md +++ b/README-zh-Hans.md @@ -1180,7 +1180,7 @@ Redis 有下列附加功能: - 将查找到的结果存储到缓存中 - 返回所需内容 -``` +```python def get_user(self, user_id): user = cache.get("user.{0}", user_id) if user is None: @@ -1223,7 +1223,7 @@ set_user(12345, {"foo":"bar"}) 缓存代码: -``` +```python def set_user(user_id, values): user = db.query("UPDATE Users WHERE id = {0}", user_id, values) cache.set(user_id, user) diff --git a/README-zh-TW.md b/README-zh-TW.md index 71f0f22a219..3c18f9346a0 100644 --- a/README-zh-TW.md +++ b/README-zh-TW.md @@ -1167,7 +1167,7 @@ Redis 還有以下額外的功能: * 將該筆記錄儲存到快取 * 將資料返回 -``` +```python def get_user(self, user_id): user = cache.get("user.{0}", user_id) if user is None: @@ -1210,7 +1210,7 @@ set_user(12345, {"foo":"bar"}) 快取程式碼: -``` +```python def set_user(user_id, values): user = db.query("UPDATE Users WHERE id = {0}", user_id, values) cache.set(user_id, user) diff --git a/README.md b/README.md index 4c5b6fdf9ea..cc0180e1c4c 100644 --- a/README.md +++ b/README.md @@ -1164,7 +1164,7 @@ The application is responsible for reading and writing from storage. The cache * Add entry to cache * Return entry -``` +```python def get_user(self, user_id): user = cache.get("user.{0}", user_id) if user is None: @@ -1201,13 +1201,13 @@ The application uses the cache as the main data store, reading and writing data Application code: -``` +```python set_user(12345, {"foo":"bar"}) ``` Cache code: -``` +```python def set_user(user_id, values): user = db.query("UPDATE Users WHERE id = {0}", user_id, values) cache.set(user_id, user) diff --git a/solutions/system_design/mint/README.md b/solutions/system_design/mint/README.md index 401165de850..6fca19385a7 100644 --- a/solutions/system_design/mint/README.md +++ b/solutions/system_design/mint/README.md @@ -182,7 +182,7 @@ For the **Category Service**, we can seed a seller-to-category dictionary with t **Clarify with your interviewer how much code you are expected to write**. -``` +```python class DefaultCategories(Enum): HOUSING = 0 @@ -199,7 +199,7 @@ seller_category_map['Target'] = DefaultCategories.SHOPPING For sellers not initially seeded in the map, we could use a crowdsourcing effort by evaluating the manual category overrides our users provide. We could use a heap to quickly lookup the top manual override per seller in O(1) time. -``` +```python class Categorizer(object): def __init__(self, seller_category_map, self.seller_category_crowd_overrides_map): @@ -219,7 +219,7 @@ class Categorizer(object): Transaction implementation: -``` +```python class Transaction(object): def __init__(self, created_at, seller, amount): @@ -232,7 +232,7 @@ class Transaction(object): To start, we could use a generic budget template that allocates category amounts based on income tiers. Using this approach, we would not have to store the 100 million budget items identified in the constraints, only those that the user overrides. If a user overrides a budget category, which we could store the override in the `TABLE budget_overrides`. -``` +```python class Budget(object): def __init__(self, income): @@ -273,7 +273,7 @@ user_id timestamp seller amount **MapReduce** implementation: -``` +```python class SpendingByCategory(MRJob): def __init__(self, categorizer): diff --git a/solutions/system_design/pastebin/README.md b/solutions/system_design/pastebin/README.md index 25c50982a2e..756c78c274c 100644 --- a/solutions/system_design/pastebin/README.md +++ b/solutions/system_design/pastebin/README.md @@ -130,7 +130,7 @@ To generate the unique url, we could: * Base 64 is another popular encoding but provides issues for urls because of the additional `+` and `/` characters * The following [Base 62 pseudocode](http://stackoverflow.com/questions/742013/how-to-code-a-url-shortener) runs in O(k) time where k is the number of digits = 7: -``` +```python def base_encode(num, base=62): digits = [] while num > 0 @@ -142,7 +142,7 @@ def base_encode(num, base=62): * Take the first 7 characters of the output, which results in 62^7 possible values and should be sufficient to handle our constraint of 360 million shortlinks in 3 years: -``` +```python url = base_encode(md5(ip_address+timestamp))[:URL_LENGTH] ``` diff --git a/solutions/system_design/query_cache/README.md b/solutions/system_design/query_cache/README.md index 6d97ff2dbb0..032adf34abd 100644 --- a/solutions/system_design/query_cache/README.md +++ b/solutions/system_design/query_cache/README.md @@ -97,7 +97,7 @@ The cache can use a doubly-linked list: new items will be added to the head whil **Query API Server** implementation: -``` +```python class QueryApi(object): def __init__(self, memory_cache, reverse_index_service): @@ -121,7 +121,7 @@ class QueryApi(object): **Node** implementation: -``` +```python class Node(object): def __init__(self, query, results): @@ -131,7 +131,7 @@ class Node(object): **LinkedList** implementation: -``` +```python class LinkedList(object): def __init__(self): @@ -150,7 +150,7 @@ class LinkedList(object): **Cache** implementation: -``` +```python class Cache(object): def __init__(self, MAX_SIZE): diff --git a/solutions/system_design/sales_rank/README.md b/solutions/system_design/sales_rank/README.md index 3ee50985775..71ad1c7d202 100644 --- a/solutions/system_design/sales_rank/README.md +++ b/solutions/system_design/sales_rank/README.md @@ -102,7 +102,7 @@ We'll use a multi-step **MapReduce**: * **Step 1** - Transform the data to `(category, product_id), sum(quantity)` * **Step 2** - Perform a distributed sort -``` +```python class SalesRanker(MRJob): def within_past_week(self, timestamp): diff --git a/solutions/system_design/social_graph/README.md b/solutions/system_design/social_graph/README.md index ef894fece0e..f7dfd4efe8d 100644 --- a/solutions/system_design/social_graph/README.md +++ b/solutions/system_design/social_graph/README.md @@ -62,7 +62,7 @@ Handy conversion guide: Without the constraint of millions of users (vertices) and billions of friend relationships (edges), we could solve this unweighted shortest path task with a general BFS approach: -``` +```python class Graph(Graph): def shortest_path(self, source, dest): @@ -117,7 +117,7 @@ We won't be able to fit all users on the same machine, we'll need to [shard](htt **Lookup Service** implementation: -``` +```python class LookupService(object): def __init__(self): @@ -132,7 +132,7 @@ class LookupService(object): **Person Server** implementation: -``` +```python class PersonServer(object): def __init__(self): @@ -151,7 +151,7 @@ class PersonServer(object): **Person** implementation: -``` +```python class Person(object): def __init__(self, id, name, friend_ids): @@ -162,7 +162,7 @@ class Person(object): **User Graph Service** implementation: -``` +```python class UserGraphService(object): def __init__(self, lookup_service): diff --git a/solutions/system_design/web_crawler/README.md b/solutions/system_design/web_crawler/README.md index f5846e97164..d95dc1071c6 100644 --- a/solutions/system_design/web_crawler/README.md +++ b/solutions/system_design/web_crawler/README.md @@ -100,7 +100,7 @@ We could store `links_to_crawl` and `crawled_links` in a key-value **NoSQL Datab `PagesDataStore` is an abstraction within the **Crawler Service** that uses the **NoSQL Database**: -``` +```python class PagesDataStore(object): def __init__(self, db); @@ -134,7 +134,7 @@ class PagesDataStore(object): `Page` is an abstraction within the **Crawler Service** that encapsulates a page, its contents, child urls, and signature: -``` +```python class Page(object): def __init__(self, url, contents, child_urls, signature): @@ -146,7 +146,7 @@ class Page(object): `Crawler` is the main class within **Crawler Service**, composed of `Page` and `PagesDataStore`. -``` +```python class Crawler(object): def __init__(self, data_store, reverse_index_queue, doc_index_queue): @@ -187,7 +187,7 @@ We'll want to remove duplicate urls: * For smaller lists we could use something like `sort | unique` * With 1 billion links to crawl, we could use **MapReduce** to output only entries that have a frequency of 1 -``` +```python class RemoveDuplicateUrls(MRJob): def mapper(self, _, line):