-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
425 lines (374 loc) · 16.4 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
import gradio as gr
from diffusers import DiffusionPipeline
import torch
import base64
from io import BytesIO
import os
import gc
import random
import time
from PIL import PngImagePlugin
from datetime import datetime
# Only used when MULTI_GPU set to True
from helper import UNetDataParallel
from share_btn import community_icon_html, loading_icon_html, share_js
# SDXL code: https://github.com/huggingface/diffusers/pull/3859
model_dir = os.getenv("SDXL_MODEL_DIR")
if model_dir:
# Use local model
model_key_base = os.path.join(model_dir, "LCM_Dreamshaper_v7")
else:
model_key_base = "SimianLuo/LCM_Dreamshaper_v7"
# Process environment variables
# Use refiner (enabled by default)
enable_refiner = False
# Output images before the refiner and after the refiner
output_images_before_refiner = True
# Generate how many images by default
default_num_images = int(os.getenv("DEFAULT_NUM_IMAGES", "4"))
if default_num_images < 1:
default_num_images = 1
# Create public link
share = os.getenv("SHARE", "false").lower() == "true"
print("Loading model", model_key_base)
pipe = DiffusionPipeline.from_pretrained(model_key_base, custom_pipeline="latent_consistency_txt2img",
custom_revision="main", from_flax=False, safety_checker=None)
pipe.to(torch_device="cuda", torch_dtype=torch.float16)
multi_gpu = os.getenv("MULTI_GPU", "false").lower() == "true"
if multi_gpu:
pipe.unet = UNetDataParallel(pipe.unet)
pipe.unet.config, pipe.unet.dtype, pipe.unet.add_embedding = pipe.unet.module.config, pipe.unet.module.dtype, pipe.unet.module.add_embedding
pipe.to("cuda")
else:
pipe.to("cuda")
# if using torch < 2.0
# pipe.enable_xformers_memory_efficient_attention()
# pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
def get_fixed_seed(seed):
if seed is None or seed == '' or seed <= -1:
return int(random.randrange(4294967294))
return int(seed)
def generate_latents(samples, width, height, in_channels, seed_base):
device = "cuda"
generator = torch.Generator(device=device)
latents = None
seeds = []
seed_base1 = int(seed_base)
seed_base1 = get_fixed_seed(seed_base1)
for i in range(samples):
# Get a new random seed, store it and use it as the generator state
seed = seed_base1 + i
seeds.append(seed)
generator = generator.manual_seed(seed)
image_latents = torch.randn(
(1, in_channels, height // 8, width // 8),
generator=generator,
device=device,
dtype=torch.float16
)
latents = image_latents if latents is None else torch.cat(
(latents, image_latents))
return latents, seeds
is_gpu_busy = False
def infer(prompt, scale, samples, steps, width, height, seed=-1):
png_info = PngImagePlugin.PngInfo()
png_info.add_text(
"Info",
f"prompt: {prompt}; CFG: {scale}; Width: {width}; "
f"Height: {height}; Seed: {seed}; Step: {steps}"
)
# prompt, negative = [prompt] * samples, [negative] * samples
prompt = [prompt] * samples
g = torch.Generator(device="cuda")
if seed != -1:
latents, seeds = generate_latents(
samples, width, height, pipe.unet.config.in_channels, seed)
else:
seed = get_fixed_seed(seed)
latents, seeds = generate_latents(
samples, width, height, pipe.unet.config.in_channels, seed)
images_b64_list = []
images = pipe(prompt=prompt, guidance_scale=scale, num_inference_steps=steps, lcm_origin_steps=50, output_type="pil", latents=latents).images
gc.collect()
torch.cuda.empty_cache()
outpath = "output"
if not os.path.exists(outpath):
os.makedirs(outpath)
today_date = datetime.today().strftime("%Y-%m-%d")
new_folder_path = os.path.join(outpath, today_date)
if not os.path.exists(new_folder_path):
os.makedirs(new_folder_path)
outpath = new_folder_path
for image in images:
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
image_b64 = (f"data:image/jpeg;base64,{img_str}")
images_b64_list.append(image_b64)
grid_count = len(os.listdir(outpath)) - 1
original_filename = f'grid-{grid_count:04}.png'
if os.path.exists(os.path.join(outpath, original_filename)):
timestamp10 = int(time.time())
original_filename = f'grid-{grid_count:04}-{timestamp10}.png'
image.save(os.path.join(outpath, original_filename), pnginfo=png_info)
return images_b64_list
css = """
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
.gr-button {
color: white;
border-color: black;
background: black;
}
input[type='range'] {
accent-color: black;
}
.dark input[type='range'] {
accent-color: #dfdfdf;
}
.container {
max-width: 730px;
margin: auto;
padding-top: 1.5rem;
}
#gallery {
min-height: 22rem;
margin-bottom: 15px;
margin-left: auto;
margin-right: auto;
border-bottom-right-radius: .5rem !important;
border-bottom-left-radius: .5rem !important;
}
#gallery>div>.h-full {
min-height: 20rem;
}
.details:hover {
text-decoration: underline;
}
.gr-button {
white-space: nowrap;
}
.gr-button:focus {
border-color: rgb(147 197 253 / var(--tw-border-opacity));
outline: none;
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
--tw-border-opacity: 1;
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
--tw-ring-opacity: .5;
}
#advanced-btn {
font-size: .7rem !important;
line-height: 19px;
margin-top: 12px;
margin-bottom: 12px;
padding: 2px 8px;
border-radius: 14px !important;
}
#advanced-options {
display: none;
margin-bottom: 20px;
}
.footer {
margin-bottom: 45px;
margin-top: 35px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}
.footer>p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
background: white;
}
.dark .footer {
border-color: #303030;
}
.dark .footer>p {
background: #0b0f19;
}
.acknowledgments h4{
margin: 1.25em 0 .25em 0;
font-weight: bold;
font-size: 115%;
}
.animate-spin {
animation: spin 1s linear infinite;
}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#share-btn-container {
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
margin-top: 10px;
margin-left: auto;
}
#share-btn {
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0;
}
#share-btn * {
all: unset;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
.gr-form{
flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0;
}
#prompt-container{
gap: 0;
}
#prompt-text-input, #negative-prompt-text-input{padding: .45rem 0.625rem}
#component-16{border-top-width: 1px!important;margin-top: 1em}
.image_duplication{position: absolute; width: 100px; left: 50px}
"""
block = gr.Blocks(css=css)
with block:
gr.HTML(
"""
<div style="text-align: center; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<svg
width="0.65em"
height="0.65em"
viewBox="0 0 115 115"
fill="none"
xmlns="http://www.w3.org/2000/svg"
>
<rect width="23" height="23" fill="white"></rect>
<rect y="69" width="23" height="23" fill="white"></rect>
<rect x="23" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="23" y="69" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="46" width="23" height="23" fill="white"></rect>
<rect x="46" y="69" width="23" height="23" fill="white"></rect>
<rect x="69" width="23" height="23" fill="black"></rect>
<rect x="69" y="69" width="23" height="23" fill="black"></rect>
<rect x="92" width="23" height="23" fill="#D9D9D9"></rect>
<rect x="92" y="69" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="115" y="46" width="23" height="23" fill="white"></rect>
<rect x="115" y="115" width="23" height="23" fill="white"></rect>
<rect x="115" y="69" width="23" height="23" fill="#D9D9D9"></rect>
<rect x="92" y="46" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="92" y="115" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="92" y="69" width="23" height="23" fill="white"></rect>
<rect x="69" y="46" width="23" height="23" fill="white"></rect>
<rect x="69" y="115" width="23" height="23" fill="white"></rect>
<rect x="69" y="69" width="23" height="23" fill="#D9D9D9"></rect>
<rect x="46" y="46" width="23" height="23" fill="black"></rect>
<rect x="46" y="115" width="23" height="23" fill="black"></rect>
<rect x="46" y="69" width="23" height="23" fill="black"></rect>
<rect x="23" y="46" width="23" height="23" fill="#D9D9D9"></rect>
<rect x="23" y="115" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="23" y="69" width="23" height="23" fill="black"></rect>
</svg>
<h1 style="font-weight: 900; margin-bottom: 7px;margin-top:5px">
LCM模型WEBUI - LCM_Dreamshaper_v7
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%; line-height: 23px;">
相关链接:https://github.com/0xbitches/sd-webui-lcm
</p>
</div>
"""
)
with gr.Group():
with gr.Box():
with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
with gr.Column():
text = gr.Textbox(
label="输入你的词汇",
show_label=False,
max_lines=1,
placeholder="输入你的词汇",
elem_id="prompt-text-input",
).style(
border=(True, False, True, True),
rounded=(True, False, False, True),
container=False,
)
btn = gr.Button("生成图片").style(
margin=False,
rounded=(False, True, True, False),
full_width=False,
)
gallery = gr.Gallery(
label="生成图片", show_label=False, elem_id="gallery"
).style(grid=[2], height="auto")
with gr.Group(elem_id="container-advanced-btns"):
#advanced_button = gr.Button("Advanced options", elem_id="advanced-btn")
with gr.Group(elem_id="share-btn-container"):
community_icon = gr.HTML(community_icon_html)
loading_icon = gr.HTML(loading_icon_html)
share_button = gr.Button("分享到社区", elem_id="share-btn")
with gr.Accordion("高级设置", open=False):
# gr.Markdown("Advanced settings are temporarily unavailable")
samples = gr.Slider(label="图片", minimum=1, maximum=max(4, default_num_images), value=default_num_images, step=1)
steps = gr.Slider(label="步数", minimum=1, maximum=50, value=25, step=1)
width = gr.Slider(label="宽度", minimum=512, maximum=2048, value=768, step=1)
height = gr.Slider(label="高度", minimum=512, maximum=2048, value=768, step=1)
guidance_scale = gr.Slider(
label="CFG", minimum=0, maximum=50, value=9, step=0.1
)
seed = gr.Slider(
label="种子",
minimum=-1,
maximum=2147483647,
step=1,
randomize=True,
)
# negative.submit(infer, inputs=[text, guidance_scale, samples, steps, width, height, seed], outputs=[gallery], postprocess=False)
text.submit(infer, inputs=[text, guidance_scale, samples, steps, width, height, seed], outputs=[gallery], postprocess=False)
btn.click(infer, inputs=[text, guidance_scale, samples, steps, width, height, seed], outputs=[gallery], postprocess=False)
#advanced_button.click(
# None,
# [],
# text,
# _js="""
# () => {
# const options = document.querySelector("body > gradio-app").querySelector("#advanced-options");
# options.style.display = ["none", ""].includes(options.style.display) ? "flex" : "none";
# }""",
#)
share_button.click(
None,
[],
[],
_js=share_js,
)
gr.HTML(
"""
<div class="footer">
<p>什么是LCM:潜在一致性模型(Latent Consistency Models,LCMs)潜在一致性模型(LCMs)将潜在空间中的引导反扩散过程视为解决一种增强概率流ODE(PF-ODE)的过程。在这个上下文中,ODE代表"Ordinary Differential Equation",是一个数学方程,用于描述随时间变化的连续值的演化。PF-ODE则是一种特定类型的ODE,被用来描述信息如何在潜在空间中流动和变化。
LCMs的关键创新在于,它们能够直接预测这种PF-ODE的解,而无需进行多次迭代来逼近解。这意味着LCMs能够更高效地生成图像,因为它们通过直接计算潜在空间中的信息流动,避免了昂贵的迭代过程,从而实现了更快速、高保真度的图像生成。</a>
</p>
</div>
"""
)
with gr.Accordion(label="License", open=False):
gr.HTML(
"""<div class="acknowledgments">
<p>仅用于免费应用。by helloworld
</p>
</div>
"""
)
block.queue().launch(share=share, inbrowser=True)