-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlightning.py
127 lines (95 loc) · 4.83 KB
/
lightning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import torch
import torch.nn as nn
import torch.nn.functional as F
import pytorch_lightning as pl
from torchmetrics import Accuracy
from torchmetrics import F1Score
# from pl_bolts.optimizers.lr_scheduler import LinearWarmupCosineAnnealingLR
from Models.model import UpstreamTransformer, UpstreamTransformerXLSR
from utils import CrossEntropyLoss
class LightningModel(pl.LightningModule):
def __init__(self, HPARAMS):
super().__init__()
# HPARAMS
self.save_hyperparameters()
self.models = {
'UpstreamTransformer': UpstreamTransformer,
'UpstreamTransformerXLSR': UpstreamTransformerXLSR,
}
self.model = self.models[HPARAMS['model_type']](upstream_model=HPARAMS['upstream_model'], feature_dim=HPARAMS['feature_dim'], unfreeze_last_conv_layers=HPARAMS['unfreeze_last_conv_layers'])
self.classification_criterion = CrossEntropyLoss()
self.accuracy_metric = Accuracy()
self.f1_metric = F1Score()
self.lr = HPARAMS['lr']
self.mixup_type = HPARAMS['mixup_type']
print(f"Model Details: #Params = {self.count_total_parameters()}\t#Trainable Params = {self.count_trainable_parameters()}")
def count_total_parameters(self):
return sum(p.numel() for p in self.parameters())
def count_trainable_parameters(self):
return sum(p.numel() for p in self.parameters() if p.requires_grad)
def forward(self, x, x_len):
return self.model(x, x_len)
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=self.lr)
# scheduler = LinearWarmupCosineAnnealingLR(optimizer, warmup_epochs=5, max_epochs=100)
return [optimizer]
# , [scheduler]
def training_step(self, batch, batch_idx):
x, x_len, y_l = batch
y_l = torch.stack(y_l)
y_hat_l = self(x, x_len)
probs = F.softmax(y_hat_l, dim=1)
language_loss = self.classification_criterion(y_hat_l, y_l)
winners = y_hat_l.argmax(dim=1)
corrects = (winners == y_l.argmax(dim=1))
language_acc = corrects.sum().float() / float( y_hat_l.size(0) )
train_step_acc = self.accuracy_metric(y_hat_l.argmax(dim=1), y_l.argmax(dim=1))
train_step_f1 = self.f1_metric(y_hat_l.argmax(dim=1), y_l.argmax(dim=1))
loss = language_loss
self.log("train/f1", train_step_acc, on_step=False, on_epoch=True)
self.log("train/acc", train_step_f1, on_step=False, on_epoch=True)
return {'loss':loss,
'language_acc':language_acc,
'probs': probs.detach().cpu().numpy(),
'labels': y_l.argmax(dim=1).detach().cpu().numpy().astype(int),
}
def training_epoch_end(self, outputs):
n_batch = len(outputs)
loss = torch.tensor([x['loss'] for x in outputs]).mean()
language_acc = torch.tensor([x['language_acc'] for x in outputs]).mean()
self.log('train/loss' , loss, on_step=False, on_epoch=True, prog_bar=True)
# self.log('train/acc',language_acc, on_step=False, on_epoch=True, prog_bar=True)
def validation_step(self, batch, batch_idx):
x, x_len, y_l = batch
y_l = torch.stack(y_l)
y_hat_l = self(x, x_len)
language_loss = self.classification_criterion(y_hat_l, y_l)
winners = y_hat_l.argmax(dim=1)
corrects = (winners == y_l.argmax(dim=1))
language_acc = corrects.sum().float() / float( y_hat_l.size(0) )
val_step_acc = self.accuracy_metric(y_hat_l.argmax(dim=1), y_l.argmax(dim=1))
val_step_f1 = self.f1_metric(y_hat_l.argmax(dim=1), y_l.argmax(dim=1))
self.log("val/f1", val_step_acc, on_step=False, on_epoch=True)
self.log("val/acc", val_step_f1, on_step=False, on_epoch=True)
loss = language_loss
return {'val_loss':loss,
'val_language_acc':language_acc,
}
def validation_epoch_end(self, outputs):
val_loss = torch.tensor([x['val_loss'] for x in outputs]).mean()
language_acc = torch.tensor([x['val_language_acc'] for x in outputs]).mean()
self.log('val/loss' , val_loss, on_step=False, on_epoch=True, prog_bar=True)
# self.log('val/acc',language_acc, on_step=False, on_epoch=True, prog_bar=True)
def test_step(self, batch, batch_idx):
x, x_len, y_l = batch
y_l = torch.stack(y_l)
y_hat_l = self(x, x_len)
winners = y_hat_l.argmax(dim=1)
corrects = (winners == y_l.argmax(dim=1))
language_acc = corrects.sum().float() / float( y_hat_l.size(0) )
return {'language_acc':language_acc}
def test_epoch_end(self, outputs):
language_acc = torch.tensor([x['language_acc'] for x in outputs]).mean()
pbar = {'language_acc' : language_acc}
self.logger.log_hyperparams(pbar)
self.log_dict(pbar)