-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtest_net.py
148 lines (113 loc) · 4.86 KB
/
test_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import argparse
import os
import torch
import numpy as np
from dataset import VideoDataSet
from models import TwoStageDetector
from torch import multiprocessing
from ops.utils import get_configs
from tqdm import tqdm
import random
import os.path as osp
import pdb
parser = argparse.ArgumentParser(
description="MUSES Testing Tool")
parser.add_argument('dataset', type=str, choices=['thumos14', 'muses'])
parser.add_argument('weights', type=str)
parser.add_argument('save_scores', type=str)
parser.add_argument('--cfg')
parser.add_argument('--save_raw_scores', type=str, default=None)
parser.add_argument('--no_regression', action="store_true", default=False)
parser.add_argument('--max_num', type=int, default=-1)
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--gpus', nargs='+', type=int, default=None)
SEED = 777
random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
np.random.seed(SEED)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
args = parser.parse_args()
configs = get_configs(args.dataset, args.cfg)
dataset_configs = configs['dataset_configs']
model_configs = configs["model_configs"]
num_class = model_configs['num_class']
gpu_list = args.gpus if args.gpus is not None else [0]
score_dir = osp.dirname(args.save_scores)
if not osp.exists(score_dir):
print('creating score directory %s' % score_dir)
os.makedirs(score_dir)
def runner_func(dataset, state_dict, stats, gpu_id, index_queue, result_queue):
torch.cuda.set_device(gpu_id)
net = TwoStageDetector(model_configs, test_mode=True, roi_size=dataset_configs['roi_pool_size'])
net.load_state_dict(state_dict)
# net.prepare_test_fc()
net.eval()
net.cuda()
while True:
index = index_queue.get()
video_ft, prop_ticks, rel_props, video_id, n_frames = dataset[index]
# calculate scores
n_out = prop_ticks.size(0)
act_scores = torch.zeros((n_out, num_class + 1)).cuda()
comp_scores = torch.zeros((n_out, num_class)).cuda()
if not args.no_regression:
reg_scores = torch.zeros((n_out, num_class * 2)).cuda()
else:
reg_scores = None
with torch.no_grad():
act_scores, comp_scores, reg_scores = net(
video_ft.unsqueeze(0).cuda(),
prop_ticks.unsqueeze(0), None, None, None)
if reg_scores is not None:
reg_scores = reg_scores.view(-1, num_class, 2)
reg_scores[:, :, 0] = reg_scores[:, :, 0] * stats[1, 0] + stats[0, 0]
reg_scores[:, :, 1] = reg_scores[:, :, 1] * stats[1, 1] + stats[0, 1]
# perform stpp on scores
result_queue.put((dataset.video_list[index].id, rel_props.numpy(), act_scores.cpu().numpy(),
comp_scores.cpu().numpy(), reg_scores.cpu().numpy(), 0))
if __name__ == '__main__':
ctx = multiprocessing.get_context('spawn') # this is crucial to using multiprocessing processes with PyTorch
# This net is used to provides setup settings. It is not used for testing.
checkpoint = torch.load(args.weights)
# pdb.set_trace()
print("model epoch {} loss: {}".format(checkpoint['epoch'], checkpoint['best_loss']))
base_dict = {'.'.join(k.split('.')[1:]): v for k, v in list(checkpoint['state_dict'].items())}
stats = checkpoint['reg_stats'].numpy()
prop_file = dataset_configs['test_prop_file']
print('using prop_file ' + prop_file)
dataset = VideoDataSet(dataset_configs,
prop_file=prop_file,
ft_path=dataset_configs['test_ft_path'],
test_mode=True)
print('Dataset Initilized')
index_queue = ctx.Queue()
result_queue = ctx.Queue()
workers = [ctx.Process(target=runner_func,
args=(dataset, base_dict, stats, gpu_list[i % len(gpu_list)],
index_queue, result_queue))
for i in range(args.workers)]
for w in workers:
w.daemon = True
w.start()
max_num = args.max_num if args.max_num > 0 else len(dataset)
print('{} videos to process'.format(max_num))
for i in range(max_num):
index_queue.put(i)
out_dict = {}
pbar = tqdm(total=max_num)
for i in range(max_num):
pbar.update(1)
rst = result_queue.get()
out_dict[rst[0]] = rst[1:]
pbar.close()
if args.save_scores is not None:
save_dict = {k: v[:-1] for k, v in out_dict.items()}
import pickle
pickle.dump(save_dict, open(args.save_scores, 'wb'), pickle.HIGHEST_PROTOCOL)
if args.save_raw_scores is not None:
save_dict = {k: v[-1] for k, v in out_dict.items()}
import pickle
pickle.dump(save_dict, open(args.save_raw_scores, 'wb'), pickle.HIGHEST_PROTOCOL)