forked from laxmimerit/NLP-Models-Tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathxl.py
664 lines (596 loc) · 23 KB
/
xl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
import tensorflow as tf
def positional_embedding(pos_seq, inv_freq, bsz = None):
sinusoid_inp = tf.einsum('i,j->ij', pos_seq, inv_freq)
pos_emb = tf.concat([tf.sin(sinusoid_inp), tf.cos(sinusoid_inp)], -1)
if bsz is not None:
return tf.tile(pos_emb[:, None, :], [1, bsz, 1])
else:
return pos_emb[:, None, :]
def positionwise_FF(inp, d_model, d_inner, kernel_initializer, scope = 'ff'):
output = inp
with tf.variable_scope(scope):
output = tf.layers.dense(
inp,
d_inner,
activation = tf.nn.relu,
kernel_initializer = kernel_initializer,
name = 'layer_1',
)
output = tf.layers.dense(
output,
d_model,
kernel_initializer = kernel_initializer,
name = 'layer_2',
)
output = tf.contrib.layers.layer_norm(
output + inp, begin_norm_axis = -1
)
return output
def rel_shift(x):
x_size = tf.shape(x)
x = tf.pad(x, [[0, 0], [1, 0], [0, 0], [0, 0]])
x = tf.reshape(x, [x_size[1] + 1, x_size[0], x_size[2], x_size[3]])
x = tf.slice(x, [1, 0, 0, 0], [-1, -1, -1, -1])
x = tf.reshape(x, x_size)
return x
def rel_multihead_attn(
w,
r,
r_w_bias,
r_r_bias,
attn_mask,
mems,
d_model,
n_head,
d_head,
kernel_initializer,
scope = 'rel_attn',
):
scale = 1 / (d_head ** 0.5)
with tf.variable_scope(scope):
qlen = tf.shape(w)[0]
rlen = tf.shape(r)[0]
bsz = tf.shape(w)[1]
cat = (
tf.concat([mems, w], 0)
if mems is not None and mems.shape.ndims > 1
else w
)
w_heads = tf.layers.dense(
cat,
3 * n_head * d_head,
use_bias = False,
kernel_initializer = kernel_initializer,
name = 'qkv',
)
r_head_k = tf.layers.dense(
r,
n_head * d_head,
use_bias = False,
kernel_initializer = kernel_initializer,
name = 'r',
)
w_head_q, w_head_k, w_head_v = tf.split(w_heads, 3, -1)
w_head_q = w_head_q[-qlen:]
klen = tf.shape(w_head_k)[0]
w_head_q = tf.reshape(w_head_q, [qlen, bsz, n_head, d_head])
w_head_k = tf.reshape(w_head_k, [klen, bsz, n_head, d_head])
w_head_v = tf.reshape(w_head_v, [klen, bsz, n_head, d_head])
r_head_k = tf.reshape(r_head_k, [rlen, n_head, d_head])
rw_head_q = w_head_q + r_w_bias
rr_head_q = w_head_q + r_r_bias
AC = tf.einsum('ibnd,jbnd->ijbn', rw_head_q, w_head_k)
BD = tf.einsum('ibnd,jnd->ijbn', rr_head_q, r_head_k)
BD = rel_shift(BD)
attn_score = (AC + BD) * scale
attn_mask_t = attn_mask[:, :, None, None]
attn_score = attn_score * (1 - attn_mask_t) - 1e30 * attn_mask_t
attn_prob = tf.nn.softmax(attn_score, 1)
attn_vec = tf.einsum('ijbn,jbnd->ibnd', attn_prob, w_head_v)
size_t = tf.shape(attn_vec)
attn_vec = tf.reshape(attn_vec, [size_t[0], size_t[1], n_head * d_head])
attn_out = tf.layers.dense(
attn_vec,
d_model,
use_bias = False,
kernel_initializer = kernel_initializer,
name = 'o',
)
output = tf.contrib.layers.layer_norm(
attn_out + w, begin_norm_axis = -1
)
return output
def embedding_lookup(lookup_table, x):
return tf.nn.embedding_lookup(lookup_table, x)
def mask_adaptive_embedding_lookup(
x,
n_token,
d_embed,
d_proj,
cutoffs,
initializer,
proj_initializer,
div_val = 1,
proj_same_dim = True,
scope = 'adaptive_embed',
**kwargs
):
emb_scale = d_proj ** 0.5
with tf.variable_scope(scope):
if div_val == 1:
lookup_table = tf.get_variable(
'lookup_table', [n_token, d_embed], initializer = initializer
)
y = embedding_lookup(lookup_table, x)
if d_proj != d_embed:
proj_W = tf.get_variable(
'proj_W', [d_embed, d_proj], initializer = proj_initializer
)
y = tf.einsum('ibe,ed->ibd', y, proj_W)
else:
proj_W = None
ret_params = [lookup_table, proj_W]
else:
tables, projs = [], []
cutoff_ends = [0] + cutoffs + [n_token]
x_size = tf.shape(x)
y = tf.zeros([x_size[0], x_size[1], d_proj])
for i in range(len(cutoff_ends) - 1):
with tf.variable_scope('cutoff_{}'.format(i)):
l_idx, r_idx = cutoff_ends[i], cutoff_ends[i + 1]
mask = (x >= l_idx) & (x < r_idx)
cur_x = tf.boolean_mask(x, mask) - l_idx
cur_d_embed = d_embed // (div_val ** i)
lookup_table = tf.get_variable(
'lookup_table',
[r_idx - l_idx, cur_d_embed],
initializer = initializer,
)
cur_y = embedding_lookup(lookup_table, cur_x)
if d_proj == cur_d_embed and not proj_same_dim:
proj_W = None
else:
proj_W = tf.get_variable(
'proj_W',
[cur_d_embed, d_proj],
initializer = proj_initializer,
)
cur_y = tf.einsum('id,de->ie', cur_y, proj_W)
mask_idx = tf.to_int64(tf.where(mask))
y += tf.scatter_nd(
mask_idx, cur_y, tf.to_int64(tf.shape(y))
)
tables.append(lookup_table)
projs.append(proj_W)
ret_params = [tables, projs]
y *= emb_scale
return y, ret_params
def mul_adaptive_embedding_lookup(
x,
n_token,
d_embed,
d_proj,
cutoffs,
initializer,
proj_initializer,
div_val = 1,
perms = None,
proj_same_dim = True,
scope = 'adaptive_embed',
):
"""
perms: If None, first compute W = W1 x W2 (projection for each bin),
and then compute X x W (embedding lookup). If not None,
use bin-based embedding lookup with max_bin_size defined by
the shape of perms.
"""
emb_scale = d_proj ** 0.5
with tf.variable_scope(scope):
if div_val == 1:
lookup_table = tf.get_variable(
'lookup_table', [n_token, d_embed], initializer = initializer
)
y = embedding_lookup(lookup_table, x)
if d_proj != d_embed:
proj_W = tf.get_variable(
'proj_W', [d_embed, d_proj], initializer = proj_initializer
)
y = tf.einsum('ibe,ed->ibd', y, proj_W)
else:
proj_W = None
ret_params = [lookup_table, proj_W]
else:
tables, projs = [], []
cutoff_ends = [0] + cutoffs + [n_token]
x_size = tf.shape(x)
if perms is None:
cat_lookup = []
else:
cat_lookup = tf.zeros([x_size[0], x_size[1], d_proj])
for i in range(len(cutoff_ends) - 1):
with tf.variable_scope('cutoff_{}'.format(i)):
l_idx, r_idx = cutoff_ends[i], cutoff_ends[i + 1]
cur_d_embed = d_embed // (div_val ** i)
lookup_table = tf.get_variable(
'lookup_table',
[r_idx - l_idx, cur_d_embed],
initializer = initializer,
)
if cur_d_embed == d_proj and not proj_same_dim:
proj_W = None
else:
proj_W = tf.get_variable(
'proj_W',
[cur_d_embed, d_proj],
initializer = proj_initializer,
)
if perms is None:
cat_lookup.append(
tf.einsum('ie,ed->id', lookup_table, proj_W)
)
else:
# speed up the computation of the first bin
# also save some meory
if i == 0:
cur_y = embedding_lookup(
lookup_table, tf.minimum(x, r_idx - 1)
)
if proj_W is not None:
cur_y = tf.einsum('ibe,ed->ibd', cur_y, proj_W)
cur_y *= perms[i][:, :, None]
cat_lookup += cur_y
else:
cur_x = tf.einsum(
'ib,ibk->k', tf.to_float(x - l_idx), perms[i]
)
cur_x = tf.to_int32(cur_x)
cur_y = embedding_lookup(lookup_table, cur_x)
if proj_W is not None:
cur_y = tf.einsum('ke,ed->kd', cur_y, proj_W)
cat_lookup += tf.einsum(
'kd,ibk->ibd', cur_y, perms[i]
)
tables.append(lookup_table)
projs.append(proj_W)
if perms is None:
cat_lookup = tf.concat(cat_lookup, 0)
y = embedding_lookup(cat_lookup, x)
else:
y = cat_lookup
ret_params = [tables, projs]
y *= emb_scale
return y, ret_params
def mask_adaptive_logsoftmax(
hidden,
target,
n_token,
d_embed,
d_proj,
cutoffs,
params,
tie_projs,
initializer = None,
proj_initializer = None,
div_val = 1,
scope = 'adaptive_softmax',
proj_same_dim = True,
return_mean = True,
**kwargs
):
def _logit(x, W, b, proj):
y = x
if proj is not None:
y = tf.einsum('ibd,ed->ibe', y, proj)
return tf.einsum('ibd,nd->ibn', y, W) + b
params_W, params_projs = params[0], params[1]
def _gather_logprob(logprob, target):
lp_size = tf.shape(logprob)
r = tf.range(lp_size[0])
idx = tf.stack([r, target], 1)
return tf.gather_nd(logprob, idx)
with tf.variable_scope(scope):
if len(cutoffs) == 0:
softmax_b = tf.get_variable(
'bias', [n_token], initializer = tf.zeros_initializer()
)
output = _logit(hidden, params_W, softmax_b, params_projs)
nll = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels = target, logits = output
)
else:
cutoff_ends = [0] + cutoffs + [n_token]
nll = tf.zeros_like(target, dtype = tf.float32)
for i in range(len(cutoff_ends) - 1):
with tf.variable_scope('cutoff_{}'.format(i)):
l_idx, r_idx = cutoff_ends[i], cutoff_ends[i + 1]
mask = (target >= l_idx) & (target < r_idx)
mask_idx = tf.where(mask)
cur_target = tf.boolean_mask(target, mask) - l_idx
cur_d_embed = d_embed // (div_val ** i)
if div_val == 1:
cur_W = params_W[l_idx:r_idx]
else:
cur_W = params_W[i]
cur_b = tf.get_variable(
'b',
[r_idx - l_idx],
initializer = tf.zeros_initializer(),
)
if tie_projs[i]:
if div_val == 1:
cur_proj = params_projs
else:
cur_proj = params_projs[i]
else:
if (
div_val == 1 or not proj_same_dim
) and d_proj == cur_d_embed:
cur_proj = None
else:
cur_proj = tf.get_variable(
'proj',
[cur_d_embed, d_proj],
initializer = proj_initializer,
)
if i == 0:
cluster_W = tf.get_variable(
'cluster_W',
[len(cutoffs), d_embed],
initializer = tf.zeros_initializer(),
)
cluster_b = tf.get_variable(
'cluster_b',
[len(cutoffs)],
initializer = tf.zeros_initializer(),
)
cur_W = tf.concat([cur_W, cluster_W], 0)
cur_b = tf.concat([cur_b, cluster_b], 0)
head_logit = _logit(hidden, cur_W, cur_b, cur_proj)
head_logprob = tf.nn.log_softmax(head_logit)
cur_head_logprob = tf.boolean_mask(head_logprob, mask)
cur_logprob = _gather_logprob(
cur_head_logprob, cur_target
)
else:
cur_head_logprob = tf.boolean_mask(head_logprob, mask)
cur_hidden = tf.boolean_mask(hidden, mask)
tail_logit = tf.squeeze(
_logit(cur_hidden[None], cur_W, cur_b, cur_proj), 0
)
tail_logprob = tf.nn.log_softmax(tail_logit)
cur_logprob = cur_head_logprob[
:, cutoff_ends[1] + i - 1
] + _gather_logprob(tail_logprob, cur_target)
nll += tf.scatter_nd(
mask_idx, -cur_logprob, tf.to_int64(tf.shape(nll))
)
if return_mean:
nll = tf.reduce_mean(nll)
return nll
def mul_adaptive_logsoftmax(
hidden,
target,
n_token,
d_embed,
d_proj,
cutoffs,
params,
tie_projs,
initializer = None,
proj_initializer = None,
div_val = 1,
perms = None,
proj_same_dim = True,
scope = 'adaptive_softmax',
**kwargs
):
def _logit(x, W, b, proj):
y = x
if x.shape.ndims == 3:
if proj is not None:
y = tf.einsum('ibd,ed->ibe', y, proj)
return tf.einsum('ibd,nd->ibn', y, W) + b
else:
if proj is not None:
y = tf.einsum('id,ed->ie', y, proj)
return tf.einsum('id,nd->in', y, W) + b
params_W, params_projs = params[0], params[1]
with tf.variable_scope(scope):
if len(cutoffs) == 0:
softmax_b = tf.get_variable(
'bias', [n_token], initializer = tf.zeros_initializer()
)
output = _logit(hidden, params_W, softmax_b, params_projs)
nll = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels = target, logits = output
)
nll = tf.reduce_mean(nll)
else:
total_loss, total_cnt = 0, 0
cutoff_ends = [0] + cutoffs + [n_token]
for i in range(len(cutoff_ends) - 1):
with tf.variable_scope('cutoff_{}'.format(i)):
l_idx, r_idx = cutoff_ends[i], cutoff_ends[i + 1]
cur_d_embed = d_embed // (div_val ** i)
if div_val == 1:
cur_W = params_W[l_idx:r_idx]
else:
cur_W = params_W[i]
cur_b = tf.get_variable(
'b',
[r_idx - l_idx],
initializer = tf.zeros_initializer(),
)
if tie_projs[i]:
if div_val == 1:
cur_proj = params_projs
else:
cur_proj = params_projs[i]
else:
if (
div_val == 1 or not proj_same_dim
) and d_proj == cur_d_embed:
cur_proj = None
else:
cur_proj = tf.get_variable(
'proj',
[cur_d_embed, d_proj],
initializer = proj_initializer,
)
if i == 0:
cluster_W = tf.get_variable(
'cluster_W',
[len(cutoffs), d_embed],
initializer = tf.zeros_initializer(),
)
cluster_b = tf.get_variable(
'cluster_b',
[len(cutoffs)],
initializer = tf.zeros_initializer(),
)
cur_W = tf.concat([cur_W, cluster_W], 0)
cur_b = tf.concat([cur_b, cluster_b], 0)
head_logit = _logit(hidden, cur_W, cur_b, cur_proj)
head_target = kwargs.get('head_target')
head_nll = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels = head_target, logits = head_logit
)
masked_loss = head_nll * perms[i]
total_loss += tf.reduce_sum(masked_loss)
total_cnt += tf.reduce_sum(perms[i])
# head_logprob = tf.nn.log_softmax(head_logit)
# final_logprob = head_logprob * perms[i][:, :, None]
# final_target = tf.one_hot(target, tf.shape(head_logprob)[2])
# total_loss -= tf.einsum('ibn,ibn->', final_logprob, final_target)
# total_cnt += tf.reduce_sum(perms[i])
else:
cur_head_nll = tf.einsum(
'ib,ibk->k', head_nll, perms[i]
)
cur_hidden = tf.einsum('ibd,ibk->kd', hidden, perms[i])
tail_logit = _logit(cur_hidden, cur_W, cur_b, cur_proj)
tail_target = tf.einsum(
'ib,ibk->k', tf.to_float(target - l_idx), perms[i]
)
tail_nll = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels = tf.to_int32(tail_target),
logits = tail_logit,
)
sum_nll = cur_head_nll + tail_nll
mask = tf.reduce_sum(perms[i], [0, 1])
masked_loss = sum_nll * mask
total_loss += tf.reduce_sum(masked_loss)
total_cnt += tf.reduce_sum(mask)
nll = total_loss / total_cnt
return nll
def _create_mask(qlen, mlen, same_length = False):
attn_mask = tf.ones([qlen, qlen])
mask_u = tf.matrix_band_part(attn_mask, 0, -1)
mask_dia = tf.matrix_band_part(attn_mask, 0, 0)
attn_mask_pad = tf.zeros([qlen, mlen])
ret = tf.concat([attn_mask_pad, mask_u - mask_dia], 1)
if same_length:
mask_l = tf.matrix_band_part(attn_mask, -1, 0)
ret = tf.concat([ret[:, :qlen] + mask_l - mask_dia, ret[:, qlen:]], 1)
return ret
def _cache_mem(curr_out, prev_mem, mem_len = None):
if mem_len is None or prev_mem is None:
new_mem = curr_out
elif mem_len == 0:
return prev_mem
else:
new_mem = tf.concat([prev_mem, curr_out], 0)[-mem_len:]
return tf.stop_gradient(new_mem)
def transformer(
dec_inp,
mems,
n_token,
n_layer,
d_model,
d_embed,
n_head,
d_head,
d_inner,
initializer,
proj_initializer = None,
mem_len = None,
cutoffs = [],
div_val = 1,
tie_projs = [],
same_length = False,
clamp_len = -1,
untie_r = False,
proj_same_dim = True,
scope = 'transformer',
):
"""
cutoffs: a list of python int. Cutoffs for adaptive softmax.
tie_projs: a list of python bools. Whether to tie the projections.
perms: a list of tensors. Each tensor should of size [len, bsz, bin_size].
Only used in the adaptive setting.
"""
new_mems = []
with tf.variable_scope(scope):
if untie_r:
r_w_bias = tf.get_variable(
'r_w_bias', [n_layer, n_head, d_head], initializer = initializer
)
r_r_bias = tf.get_variable(
'r_r_bias', [n_layer, n_head, d_head], initializer = initializer
)
else:
r_w_bias = tf.get_variable(
'r_w_bias', [n_head, d_head], initializer = initializer
)
r_r_bias = tf.get_variable(
'r_r_bias', [n_head, d_head], initializer = initializer
)
qlen = tf.shape(dec_inp)[0]
mlen = tf.shape(mems[0])[0] if mems is not None else 0
klen = mlen + qlen
if proj_initializer is None:
proj_initializer = initializer
lookup_fn = mask_adaptive_embedding_lookup
embeddings, shared_params = lookup_fn(
x = dec_inp,
n_token = n_token,
d_embed = d_embed,
d_proj = d_model,
cutoffs = cutoffs,
initializer = initializer,
proj_initializer = proj_initializer,
div_val = div_val,
proj_same_dim = proj_same_dim,
)
attn_mask = _create_mask(qlen, mlen, same_length)
pos_seq = tf.range(klen - 1, -1, -1.0)
if clamp_len > 0:
pos_seq = tf.minimum(pos_seq, clamp_len)
inv_freq = 1 / (10000 ** (tf.range(0, d_model, 2.0) / d_model))
pos_emb = positional_embedding(pos_seq, inv_freq)
if mems is None:
mems = [None] * n_layer
output = embeddings
for i in range(n_layer):
# cache new mems
new_mems.append(_cache_mem(output, mems[i], mem_len))
with tf.variable_scope('layer_{}'.format(i)):
output = rel_multihead_attn(
w = output,
r = pos_emb,
r_w_bias = r_w_bias if not untie_r else r_w_bias[i],
r_r_bias = r_r_bias if not untie_r else r_r_bias[i],
attn_mask = attn_mask,
mems = mems[i],
d_model = d_model,
n_head = n_head,
d_head = d_head,
kernel_initializer = initializer,
)
output = positionwise_FF(
inp = output,
d_model = d_model,
d_inner = d_inner,
kernel_initializer = initializer,
)
return output, new_mems