forked from TheAlgorithms/Rust
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlowest_common_ancestor.rs
211 lines (201 loc) · 6.98 KB
/
lowest_common_ancestor.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
/*
Note: We will assume that here tree vertices are numbered from 1 to n.
If a tree is not enumerated that way or its vertices are not represented
using numbers, it can trivially be converted using Depth First Search
manually or by using `src/graph/graph_enumeration.rs`
Here we implement two different algorithms:
- The online one is implemented using Sparse Table and has O(n.lg(n))
time complexity and memory usage. It answers each query in O(lg(n)).
- The offline algorithm was discovered by Robert Tarjan. At first each
query should be determined and saved. Then, vertices are visited in
Depth First Search order and queries are answered using Disjoint
Set Union algorithm. The time complexity is O(n.alpha(n) + q) and
memory usage is O(n + q), but time complexity can be considered to be O(n + q),
because alpha(n) < 5 for n < 10 ^ 600
*/
use super::DisjointSetUnion;
pub struct LowestCommonAncestorOnline {
// Make members public to allow the user to fill them themself.
pub parents_sparse_table: Vec<Vec<usize>>,
pub height: Vec<usize>,
}
impl LowestCommonAncestorOnline {
// Should be called once as:
// fill_sparse_table(tree_root, 0, 0, adjacency_list)
#[inline]
fn get_parent(&self, v: usize, i: usize) -> usize {
self.parents_sparse_table[v][i]
}
#[inline]
fn num_parents(&self, v: usize) -> usize {
self.parents_sparse_table[v].len()
}
pub fn new(num_vertices: usize) -> Self {
let mut pars = vec![vec![0]; num_vertices + 1];
pars[0].clear();
LowestCommonAncestorOnline {
parents_sparse_table: pars,
height: vec![0; num_vertices + 1],
}
}
pub fn fill_sparse_table(
&mut self,
vertex: usize,
parent: usize,
height: usize,
adj: &[Vec<usize>],
) {
self.parents_sparse_table[vertex][0] = parent;
self.height[vertex] = height;
let mut level = 1;
let mut current_parent = parent;
while self.num_parents(current_parent) >= level {
current_parent = self.get_parent(current_parent, level - 1);
level += 1;
self.parents_sparse_table[vertex].push(current_parent);
}
for &child in adj[vertex].iter() {
if child == parent {
// It isn't a child!
continue;
}
self.fill_sparse_table(child, vertex, height + 1, adj);
}
}
pub fn get_ancestor(&self, mut v: usize, mut u: usize) -> usize {
if self.height[v] < self.height[u] {
std::mem::swap(&mut v, &mut u);
}
// Bring v up to so that it has the same height as u
let height_diff = self.height[v] - self.height[u];
for i in 0..63 {
let bit = 1 << i;
if bit > height_diff {
break;
}
if height_diff & bit != 0 {
v = self.get_parent(v, i);
}
}
if u == v {
return u;
}
// `self.num_parents` of u and v should be equal
for i in (0..self.num_parents(v)).rev() {
let nv = self.get_parent(v, i);
let nu = self.get_parent(u, i);
if nv != nu {
u = nu;
v = nv;
}
}
self.get_parent(v, 0)
}
}
#[derive(Clone, Copy)]
pub struct LCAQuery {
other: usize,
query_id: usize,
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct QueryAnswer {
query_id: usize,
answer: usize,
}
pub struct LowestCommonAncestorOffline {
pub queries: Vec<Vec<LCAQuery>>,
dsu: DisjointSetUnion,
/*
The LSB of dsu_parent[v] determines whether it was visited or not.
The rest of the number determines the vertex that represents a
particular set in DSU.
*/
dsu_parent: Vec<u64>,
}
impl LowestCommonAncestorOffline {
pub fn new(num_vertices: usize) -> Self {
LowestCommonAncestorOffline {
queries: vec![vec![]; num_vertices + 1],
dsu: DisjointSetUnion::new(num_vertices),
dsu_parent: vec![0; num_vertices + 1],
}
}
pub fn add_query(&mut self, u: usize, v: usize, query_id: usize) {
// We should add this query to both vertices, and it will be answered
// the second time it is seen in DFS.
self.queries[u].push(LCAQuery { other: v, query_id });
if u == v {
return;
}
self.queries[v].push(LCAQuery { other: u, query_id });
}
fn calculate_answers(
&mut self,
vertex: usize,
parent: usize,
adj: &[Vec<usize>],
answers: &mut Vec<QueryAnswer>,
) {
self.dsu_parent[vertex] = (vertex as u64) << 1;
for &child in adj[vertex].iter() {
if child == parent {
continue;
}
self.calculate_answers(child, vertex, adj, answers);
self.dsu.merge(child, vertex);
let set = self.dsu.find_set(vertex);
self.dsu_parent[set] = ((vertex as u64) << 1) | (self.dsu_parent[set] & 1);
}
self.dsu_parent[vertex] |= 0b1;
for &query in self.queries[vertex].iter() {
if self.dsu_parent[query.other] & 1 != 0 {
// It has been visited
answers.push(QueryAnswer {
query_id: query.query_id,
answer: (self.dsu_parent[self.dsu.find_set(query.other)] >> 1) as usize,
});
}
}
}
pub fn answer_queries(&mut self, root: usize, adj: &[Vec<usize>]) -> Vec<QueryAnswer> {
let mut answers = Vec::new();
self.calculate_answers(root, 0, adj, &mut answers);
answers
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn small_binary_tree() {
let num_verts = 127;
let mut tree: Vec<Vec<usize>> = vec![vec![]; num_verts + 1];
for i in 1..=num_verts >> 1 {
let left_child = i << 1;
let right_child = left_child + 1;
tree[i].push(left_child);
tree[i].push(right_child);
tree[left_child].push(i);
tree[right_child].push(i);
}
let mut online_answers: Vec<QueryAnswer> = Vec::new();
let mut online = LowestCommonAncestorOnline::new(num_verts);
let mut offline = LowestCommonAncestorOffline::new(num_verts);
let mut query_id = 314; // A random number, doesn't matter
online.fill_sparse_table(1, 0, 0, &tree);
for i in 1..=num_verts {
for j in 1..i {
// Query every possible pair
online_answers.push(QueryAnswer {
query_id,
answer: online.get_ancestor(i, j),
});
offline.add_query(i, j, query_id);
query_id += 1;
}
}
let mut offline_answers = offline.answer_queries(1, &tree);
offline_answers.sort_unstable_by(|a1, a2| a1.query_id.cmp(&a2.query_id));
assert_eq!(offline_answers, online_answers);
}
}