forked from TheAlgorithms/Rust
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkmeans.rs
176 lines (160 loc) · 6.56 KB
/
kmeans.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
// Macro to implement kmeans for both f64 and f32 without writing everything
// twice or importing the `num` crate
macro_rules! impl_kmeans {
($kind: ty, $modname: ident) => {
// Since we can't overload methods in rust, we have to use namespacing
pub mod $modname {
use std::$modname::INFINITY;
/// computes sum of squared deviation between two identically sized vectors
/// `x`, and `y`.
fn distance(x: &[$kind], y: &[$kind]) -> $kind {
x.iter()
.zip(y.iter())
.fold(0.0, |dist, (&xi, &yi)| dist + (xi - yi).powi(2))
}
/// Returns a vector containing the indices z<sub>i</sub> in {0, ..., K-1} of
/// the centroid nearest to each datum.
fn nearest_centroids(xs: &[Vec<$kind>], centroids: &[Vec<$kind>]) -> Vec<usize> {
xs.iter()
.map(|xi| {
// Find the argmin by folding using a tuple containing the argmin
// and the minimum distance.
let (argmin, _) = centroids.iter().enumerate().fold(
(0_usize, INFINITY),
|(min_ix, min_dist), (ix, ci)| {
let dist = distance(xi, ci);
if dist < min_dist {
(ix, dist)
} else {
(min_ix, min_dist)
}
},
);
argmin
})
.collect()
}
/// Recompute the centroids given the current clustering
fn recompute_centroids(
xs: &[Vec<$kind>],
clustering: &[usize],
k: usize,
) -> Vec<Vec<$kind>> {
let ndims = xs[0].len();
// NOTE: Kind of inefficient because we sweep all the data from each of the
// k centroids.
(0..k)
.map(|cluster_ix| {
let mut centroid: Vec<$kind> = vec![0.0; ndims];
let mut n_cluster: $kind = 0.0;
xs.iter().zip(clustering.iter()).for_each(|(xi, &zi)| {
if zi == cluster_ix {
n_cluster += 1.0;
xi.iter().enumerate().for_each(|(j, &x_ij)| {
centroid[j] += x_ij;
});
}
});
centroid.iter().map(|&c_j| c_j / n_cluster).collect()
})
.collect()
}
/// Assign the N D-dimensional data, `xs`, to `k` clusters using K-Means clustering
pub fn kmeans(xs: Vec<Vec<$kind>>, k: usize) -> Vec<usize> {
assert!(xs.len() >= k);
// Rather than pulling in a dependency to radomly select the staring
// points for the centroids, we're going to deterministally choose them by
// slecting evenly spaced points in `xs`
let n_per_cluster: usize = xs.len() / k;
let centroids: Vec<Vec<$kind>> =
(0..k).map(|j| xs[j * n_per_cluster].clone()).collect();
let mut clustering = nearest_centroids(&xs, ¢roids);
loop {
let centroids = recompute_centroids(&xs, &clustering, k);
let new_clustering = nearest_centroids(&xs, ¢roids);
// loop until the clustering doesn't change after the new centroids are computed
if new_clustering
.iter()
.zip(clustering.iter())
.all(|(&za, &zb)| za == zb)
{
// We need to use `return` to break out of the `loop`
return clustering;
} else {
clustering = new_clustering;
}
}
}
}
};
}
// generate code for kmeans for f32 and f64 data
impl_kmeans!(f64, f64);
impl_kmeans!(f32, f32);
#[cfg(test)]
mod test {
use self::super::f64::kmeans;
#[test]
fn easy_univariate_clustering() {
let xs: Vec<Vec<f64>> = vec![
vec![-1.1],
vec![-1.2],
vec![-1.3],
vec![-1.4],
vec![1.1],
vec![1.2],
vec![1.3],
vec![1.4],
];
let clustering = kmeans(xs, 2);
assert_eq!(clustering, vec![0, 0, 0, 0, 1, 1, 1, 1]);
}
#[test]
fn easy_univariate_clustering_odd_number_of_data() {
let xs: Vec<Vec<f64>> = vec![
vec![-1.1],
vec![-1.2],
vec![-1.3],
vec![-1.4],
vec![1.1],
vec![1.2],
vec![1.3],
vec![1.4],
vec![1.5],
];
let clustering = kmeans(xs, 2);
assert_eq!(clustering, vec![0, 0, 0, 0, 1, 1, 1, 1, 1]);
}
#[test]
fn easy_bivariate_clustering() {
let xs: Vec<Vec<f64>> = vec![
vec![-1.1, 0.2],
vec![-1.2, 0.3],
vec![-1.3, 0.1],
vec![-1.4, 0.4],
vec![1.1, -1.1],
vec![1.2, -1.0],
vec![1.3, -1.2],
vec![1.4, -1.3],
];
let clustering = kmeans(xs, 2);
assert_eq!(clustering, vec![0, 0, 0, 0, 1, 1, 1, 1]);
}
#[test]
fn high_dims() {
let xs: Vec<Vec<f64>> = vec![
vec![-2.7825343, -1.7604825, -5.5550113, -2.9752946, -2.7874138],
vec![-2.9847919, -3.8209332, -2.1531757, -2.2710119, -2.3582877],
vec![-3.0109320, -2.2366132, -2.8048492, -1.2632331, -4.5755581],
vec![-2.8432186, -1.0383805, -2.2022826, -2.7435962, -2.0013399],
vec![-2.6638082, -3.5520086, -1.3684702, -2.1562444, -1.3186447],
vec![1.7409171, 1.9687576, 4.7162628, 4.5743537, 3.7905611],
vec![3.2932369, 2.8508700, 2.5580937, 2.0437325, 4.2192562],
vec![2.5843321, 2.8329818, 2.1329531, 3.2562319, 2.4878733],
vec![2.1859638, 3.2880048, 3.7018615, 2.3641232, 1.6281994],
vec![2.6201773, 0.9006588, 2.6774097, 1.8188620, 1.6076493],
];
let clustering = kmeans(xs, 2);
assert_eq!(clustering, vec![0, 0, 0, 0, 0, 1, 1, 1, 1, 1]);
}
}