-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
74 lines (59 loc) · 2.13 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import bilstm_crf_model
import argparse
from utils import *
from keras.callbacks import ModelCheckpoint
import keras
lr_base = 0.001
epochs = 250
lr_power = 0.9
def lr_scheduler(epoch, mode='adam'):
'''if lr_dict.has_key(epoch):
lr = lr_dict[epoch]
print 'lr: %f' % lr'''
if mode is 'power_decay':
# original lr scheduler
lr = lr_base * ((1 - float(epoch) / epochs) ** lr_power)
if mode is 'exp_decay':
# exponential decay
lr = (float(lr_base) ** float(lr_power)) ** float(epoch + 1)
# adam default lr
if mode is 'adam':
lr = 0.001
if mode is 'progressive_drops':
# drops as progression proceeds, good for sgd
if epoch > 0.9 * epochs:
lr = 0.0001
elif epoch > 0.75 * epochs:
lr = 0.001
elif epoch > 0.5 * epochs:
lr = 0.01
else:
lr = 0.1
print('lr: %f' % lr)
return lr
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='TRAIN')
parser.add_argument('--num', type=int)
parser.add_argument('--embed', type=int)
parser.add_argument('--units', type=int)
parser.add_argument('--epoch', type=int)
parser.add_argument('--gpu', type=int)
parser.add_argument('--save', type=str)
parser.add_argument('--batch', type=int, default=2)
args = parser.parse_args()
args.num = 0
args.gpu = 0
args.epoch = 200
args.batch = 64
args.embed = 200
args.units = 200
gpu_config(args.gpu)
model, (train_x, train_y), (test_x, test_y) = bilstm_crf_model.create_model(args.embed, args.units)
# used for multi checkpoints to vote
#filepath = args.save+'/weights-improvement-{epoch:02d}-{val_acc:.4f}.h5'
# only get the best single model
filepath = args.save+'/model.h5'
checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')
scheduler = keras.callbacks.LearningRateScheduler(lr_scheduler)
model.fit(train_x, train_y,batch_size=args.batch,epochs=args.epoch,
validation_data=[test_x, test_y],callbacks=[checkpoint,scheduler])