-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathbech32.cpp
345 lines (314 loc) · 12.1 KB
/
bech32.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <assert.h>
#include <map>
#include <algorithm>
static uint32_t bech32_polymod_step(uint32_t pre, uint32_t encval, uint32_t decval) {
int b = encval ^ (pre >> 25);
return decval ^ ((pre & 0x1FFFFFF) << 5) ^
(-((b >> 0) & 1) & 0x3b6a57b2UL) ^
(-((b >> 1) & 1) & 0x26508e6dUL) ^
(-((b >> 2) & 1) & 0x1ea119faUL) ^
(-((b >> 3) & 1) & 0x3d4233ddUL) ^
(-((b >> 4) & 1) & 0x2a1462b3UL);
}
void bech32_encode(char* output, const char* hrp, size_t hrp_len, const uint8_t* data, size_t data_len) {
static const char* zbase32="ybndrfg8ejkmcpqxot1uwisza345h769";
uint32_t chk = 0x3b6a57b2UL;
size_t i;
for (i = 0; i < hrp_len; ++i) {
chk = bech32_polymod_step(chk, hrp[i] >> 5, 0);
}
chk = bech32_polymod_step(chk, 0, 0);
for (i = 0; i < hrp_len; ++i) {
chk = bech32_polymod_step(chk, *hrp & 0x1f, 0);
*(output++) = *(hrp++);
}
*(output++) = '-';
chk = bech32_polymod_step(chk, 0, 0);
for (i = 0; i < data_len; ++i) {
chk = bech32_polymod_step(chk, *data, 0);
*(output++) = zbase32[*(data++)];
}
chk ^= 1;
for (i = 0; i < 6; ++i) {
*(output++) = zbase32[(chk >> ((5 - i) * 5)) & 0x1f];
}
*output = 0;
}
int bech32_decode(size_t *hrp_len, uint8_t* data, size_t* data_len, char* input, size_t input_len) {
static const int zbase32_alpha[26] = {24,1,12,3,8,5,6,28,21,9,10,-1,11,2,16,13,14,4,22,17,19,-1,20,15,0,23};
static const int zbase32_num[10] = {-1,18,-1,25,26,27,30,29,7,31};
uint32_t chk = 1;
size_t i;
if (input_len < 8 || input_len > 89) {
return -1;
}
*data_len = 0;
while (*data_len < input_len && input[input_len - 1 - *data_len] != '-') {
++(*data_len);
}
*hrp_len = input_len - *data_len;
if (*hrp_len < 1) {
return -2;
}
for (i = 0; i < *hrp_len - 1; ++i) {
if (input[i] < 32 || input[i] > 127) {
return -3;
}
chk = bech32_polymod_step(chk, 0, input[i] >> 5);
}
chk = bech32_polymod_step(chk, 0, 0);
for (i = 0; i < *hrp_len - 1; ++i) {
chk = bech32_polymod_step(chk, 0, input[i] & 0x1f);
}
chk = bech32_polymod_step(chk, 0, 0);
++i;
while (i < input_len) {
int v = (input[i] >= '0' && input[i] <= '9') ? zbase32_num[input[i] - '0'] :
(input[i] >= 'a' && input[i] <= 'z') ? zbase32_alpha[input[i] - 'a'] :
-1;
if (v == -1) {
return -4;
}
chk = bech32_polymod_step(chk, 0, v);
if (i + 6 < input_len) {
data[i - *hrp_len - 1] = v;
}
++i;
}
return chk == 1;
}
static int16_t exptable[1024], logtable[1024];
void build_gftables(void) {
// Build table for GF(32)
int8_t exp5[32], log5[32];
int fmod = 41;
log5[0] = -1;
log5[1] = 0;
exp5[0] = 1;
exp5[31] = 1;
int v = 1;
for (int i = 1; i < 31; i++) {
v = v << 1;
if (v & 32) v ^= fmod;
exp5[i] = v;
log5[v] = i;
}
// Build table for GF(1024)
logtable[0] = -1;
logtable[1] = 0;
exptable[0] = 1;
exptable[1023] = 1;
v = 1;
for (int i = 1; i < 1023; i++) {
int v0 = v & 31;
int v1 = v >> 5;
int v1n = (v1 ? exp5[(log5[v1] + log5[6]) % 31] : 0) ^ (v0 ? exp5[(log5[v0] + log5[9]) % 31] : 0);
int v0n = (v1 ? exp5[(log5[v1] + log5[27]) % 31] : 0) ^ (v0 ? exp5[(log5[v0] + log5[15]) % 31] : 0);
v = v1n << 5 | v0n;
exptable[i] = v;
logtable[v] = i;
}
}
static inline uint32_t syndrome(uint32_t fault) {
uint32_t low = fault & 0x1f;
return low ^ (low << 10) ^ (low << 20) ^
(-((fault >> 5) & 1) & 0x31edd3c4UL) ^
(-((fault >> 6) & 1) & 0x335f86a8UL) ^
(-((fault >> 7) & 1) & 0x363b8870UL) ^
(-((fault >> 8) & 1) & 0x3e6390c9UL) ^
(-((fault >> 9) & 1) & 0x2ec72192UL) ^
(-((fault >> 10) & 1) & 0x1046f79dUL) ^
(-((fault >> 11) & 1) & 0x208d4e33UL) ^
(-((fault >> 12) & 1) & 0x130ebd6fUL) ^
(-((fault >> 13) & 1) & 0x2499fadeUL) ^
(-((fault >> 14) & 1) & 0x1b27d4b5UL) ^
(-((fault >> 15) & 1) & 0x04be1eb4UL) ^
(-((fault >> 16) & 1) & 0x0968b861UL) ^
(-((fault >> 17) & 1) & 0x1055f0c2UL) ^
(-((fault >> 18) & 1) & 0x20ab4584UL) ^
(-((fault >> 19) & 1) & 0x1342af08UL) ^
(-((fault >> 20) & 1) & 0x24f1f318UL) ^
(-((fault >> 21) & 1) & 0x1be34739UL) ^
(-((fault >> 22) & 1) & 0x35562f7bUL) ^
(-((fault >> 23) & 1) & 0x3a3c5bffUL) ^
(-((fault >> 24) & 1) & 0x266c96f7UL) ^
(-((fault >> 25) & 1) & 0x25c78b65UL) ^
(-((fault >> 26) & 1) & 0x1b1f13eaUL) ^
(-((fault >> 27) & 1) & 0x34baa2f4UL) ^
(-((fault >> 28) & 1) & 0x3b61c0e1UL) ^
(-((fault >> 29) & 1) & 0x265325c2UL);
}
static inline uint32_t mod1023(uint32_t x) { return (x & 0x3FF) + (x >> 10); }
int find_error_pos(uint32_t fault, int length)
{
if (fault == 0) {
return 0;
}
uint32_t syn = syndrome(fault);
int s0 = syn & 0x3FF;
int s1 = (syn >> 10) & 0x3FF;
int s2 = syn >> 20;
int l_s0 = logtable[s0], l_s1 = logtable[s1], l_s2 = logtable[s2];
if (l_s0 != -1 && l_s1 != -1 && l_s2 != -1 && mod1023(mod1023(2 * l_s1 - l_s2 - l_s0 + 2047)) == 1) {
int p1 = mod1023(l_s1 - l_s0 + 1024) - 1;
if (p1 >= length) return -1;
int e1 = exptable[mod1023(mod1023(l_s0 + (1023 - 997) * p1))];
if (e1 >= 32) return -1;
return p1 + 1;
}
for (int p1 = 0; p1 < length; p1++) {
int s2_s1p1 = s2 ^ (s1 == 0 ? 0 : exptable[mod1023(l_s1 + p1)]);
if (s2_s1p1 == 0) continue;
int s1_s0p1 = s1 ^ (s0 == 0 ? 0 : exptable[mod1023(l_s0 + p1)]);
if (s1_s0p1 == 0) continue;
int l_s1_s0p1 = logtable[s1_s0p1];
int p2 = mod1023(logtable[s2_s1p1] - l_s1_s0p1 + 1023);
if (p2 >= length || p1 == p2) continue;
int s1_s0p2 = s1 ^ (s0 == 0 ? 0 : exptable[mod1023(l_s0 + p2)]);
if (s1_s0p2 == 0) continue;
int inv_p1_p2 = 1023 - logtable[exptable[p1] ^ exptable[p2]];
int e1 = exptable[mod1023(mod1023(logtable[s1_s0p2] + inv_p1_p2 + (1023 - 997)*p1))];
if (e1 >= 32) continue;
int e2 = exptable[mod1023(mod1023(l_s1_s0p1 + inv_p1_p2 + (1023 - 997)*p2))];
if (e2 >= 32) continue;
if (p1 < p2) {
return (p1 + 1) << 8 | (p2 + 1);
} else {
return (p2 + 1) << 8 | (p1 + 1);
}
}
return -1;
}
static int cmp3(const void* a, const void* b) {
int* pa = (int*)a;
int* pb = (int*)b;
if (pa[0] < pb[0]) return -1;
if (pa[0] > pb[0]) return 1;
if (pa[1] < pb[1]) return -1;
if (pa[1] > pb[1]) return 1;
if (pa[2] < pb[2]) return -1;
if (pa[2] > pb[2]) return 1;
return 0;
}
int main(void) {
build_gftables();
/*
Generate the fault -> syndrome table:
for (int p = 0; p < 6; p++) {
for (int i = 0; i < 5; i++) {
int fault = 1 << i;
for (int x = 0; x < p; x++) { fault = bech32_polymod_step(fault, 0, 0); }
int s0 = 0, s1 = 0, s2 = 0;
for (int i = 0; i < 6; i++) {
int fi = (fault >> (5 * (5 - i))) & 31;
s0 = mul10l(s0, 997) ^ fi;
s1 = mul10l(s1, 998) ^ fi;
s2 = mul10l(s2, 999) ^ fi;
}
printf("0x%x ", s2 << 20 | s1 << 10 | s0);
}
}
printf("\n");
*/
static uint32_t faults[89][31];
for (int err = 1; err < 32; ++err) {
faults[0][err - 1] = err;
for (int pos = 1; pos < 89; ++pos) {
faults[pos][err - 1] = bech32_polymod_step(faults[pos - 1][err - 1], 0, 0);
}
}
for (int pos1 = 0; pos1 < 89; ++pos1) {
for (int err1 = 1; err1 < 32; ++err1) {
uint32_t fault = faults[pos1][err1 - 1];
int solve = find_error_pos(fault, 89);
if (solve != pos1 + 1) {
printf("Fail: E%iP%i -> S%x\n", err1, pos1, solve);
}
}
}
for (int pos1 = 0; pos1 < 89; ++pos1) {
for (int err1 = 1; err1 < 32; ++err1) {
uint32_t fault1 = faults[pos1][err1 - 1];
for (int pos2 = pos1 + 1; pos2 < 89; ++pos2) {
for (int err2 = 1; err2 < 32; ++err2) {
uint32_t fault = fault1 ^ faults[pos2][err2 - 1];
int solve = find_error_pos(fault, 89);
if (solve != (((pos1 + 1) << 8) | (pos2 + 1))) {
printf("Fail: E%i@P%i E%iP%i -> S%x\n", err1, pos1, err2, pos2, solve);
}
}
}
}
}
int len = 10;
uint64_t total[32] = {0};
uint64_t fails[32] = {0};
std::map<int, uint64_t> xfails[32];
#pragma omp parallel for
for (int err1 = 1; err1 < 32; ++err1) {
int counts[89*31][3];
for (int pos1 = 0; pos1 < len; ++pos1) {
uint32_t fault1 = faults[pos1][err1 - 1];
for (int pos2 = pos1 + 1; pos2 < len; ++pos2) {
for (int err2 = 1; err2 < 32; ++err2) {
uint32_t fault2 = fault1 ^ faults[pos2][err2 - 1];
for (int pos3 = pos2 + 1; pos3 < len; ++pos3) {
for (int err3 = 1; err3 < 32; ++err3) {
uint32_t fault3 = fault2 ^ faults[pos3][err3 - 1];
int solve = find_error_pos(fault3, len);
++total[err1];
if (solve != -1) {
fails[err1] += (solve != -1);
} else {
int ncounts = 0;
for (int pos4 = 0; pos4 < len; ++pos4) {
for (int err4 = 1; err4 < 32; ++err4) {
uint32_t fault4 = fault3 ^ faults[pos4][err4 - 1];
int solvex = find_error_pos(fault4, len);
if (solvex != -1) {
unsigned int p1 = (solvex & 0xFF) - 1;
unsigned int p2 = (solvex >> 8) - 1;
assert(p1 < len && p2 < len);
std::array<int, 3> pos = {pos4, p1, p2};
std::sort(pos.begin(), pos.end());
assert(ncounts < 89*31);
counts[ncounts][0] = pos[0];
counts[ncounts][1] = pos[1];
counts[ncounts][2] = pos[2];
++ncounts;
}
}
}
qsort(counts, ncounts, sizeof(counts[0]), cmp3);
int diff = 0;
for (int xx = 0; xx < ncounts; ++xx) {
if (xx == 0 || cmp3(counts[xx], counts[xx-1]) != 0) {
++diff;
}
}
++xfails[err1][diff];
}
}
}
}
}
}
}
uint64_t o_total = 0;
uint64_t o_fails = 0;
std::map<int, int> o_xfails;
for (int p = 0; p < 32; ++p) {
o_total += total[p];
o_fails += fails[p];
for (auto const &e : xfails[p]) {
o_xfails[e.first] += e.second;
}
}
printf("%llu out of %llu HD3 errors are HD2 from another valid codeword\n", (unsigned long long)o_fails, (unsigned long long)o_total);
for (auto const &e : o_xfails) {
printf("%i HD3 interpretations occur %llu times\n", e.first, (unsigned long long)e.second);
}
}