-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
94 lines (76 loc) · 3.88 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# Package Imports
import torch
from pytorch_lightning import Trainer
from omegaconf import OmegaConf
import wandb
import os, datetime
from multiprocessing import freeze_support
# local imports
from model.SRGAN import SRGAN_model
# Run Main Function
if __name__ == '__main__':
# required for Multprocessing on Windows
freeze_support()
# General
torch.set_float32_matmul_precision('medium')
# load config
config = OmegaConf.load("config.yaml")
#############################################################################################################
" LOAD MODEL "
#############################################################################################################
# load rpetrained or instanciate new
if config.Model.load_checkpoint:
model = SRGAN_model.load_from_checkpoint(config.Model.ckpt_path, strict=False)
else:
model = SRGAN_model()
#############################################################################################################
""" GET DATA """
#############################################################################################################
# create dataloaders via dataset_selector -> config -> class selection -> convert to pl_module
from utils.datasets import dataset_selector
pl_datamodule = dataset_selector(config)
#############################################################################################################
""" Configure Trainer """
#############################################################################################################
# set up logging
from pytorch_lightning.loggers import WandbLogger
wandb_project = "2023_SRGAN" #"testing"
wandb_logger = WandbLogger(project=wandb_project,entity="simon-donike")
from pytorch_lightning import loggers as pl_loggers
tb_logger = pl_loggers.TensorBoardLogger(save_dir=os.path.normpath("logs/"))
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter(os.path.normpath('logs/tmp'))
from pytorch_lightning.callbacks import ModelCheckpoint
dir_save_checkpoints = os.path.join(tb_logger.save_dir,wandb_project,
datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S"))
print("Experiment Path:",dir_save_checkpoints)
checkpoint_callback = ModelCheckpoint(dirpath=dir_save_checkpoints,
monitor='val/L1',
mode='min',
save_last=True,
save_top_k=2)
from pytorch_lightning.callbacks import LearningRateMonitor
lr_monitor = LearningRateMonitor(logging_interval='epoch')
# callback to set up early stopping
from pytorch_lightning.callbacks.early_stopping import EarlyStopping
early_stop_callback = EarlyStopping(monitor="val/L1", min_delta=0.00, patience=250, verbose=True,
mode="min",check_finite=True) # patience in epochs
#############################################################################################################
""" Start Training """
#############################################################################################################
trainer = Trainer(accelerator='cuda',
devices=[0],
check_val_every_n_epoch=1,
val_check_interval=0.5,
limit_val_batches=250,
max_epochs=99999,
logger=[
wandb_logger,
],
callbacks=[ checkpoint_callback,
early_stop_callback,
lr_monitor
])
trainer.fit(model, datamodule=pl_datamodule)
wandb.finish()
writer.close()