forked from zuruoke/watermark-removal
-
Notifications
You must be signed in to change notification settings - Fork 0
/
inpaint.yml
70 lines (63 loc) · 2.05 KB
/
inpaint.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# =========================== Basic Settings ===========================
# machine info
num_gpus_per_job: 1 # number of gpus each job need
num_cpus_per_job: 4 # number of gpus each job need
num_hosts_per_job: 1
memory_per_job: 32 # number of gpus each job need
gpu_type: 'nvidia-tesla-p100'
# parameters
name: places2_gated_conv_v100 # any name
model_restore: '' # logs/places2_gated_conv
dataset: 'celebahq' # 'tmnist', 'dtd', 'places2', 'celeba', 'imagenet', 'cityscapes'
random_crop: False # Set to false when dataset is 'celebahq', meaning only resize the images to img_shapes, instead of crop img_shapes from a larger raw image. This is useful when you train on images with different resolutions like places2. In these cases, please set random_crop to true.
val: False # true if you want to view validation results in tensorboard
log_dir: logs/full_model_celeba_hq_256
gan: 'sngan'
gan_loss_alpha: 1
gan_with_mask: True
discounted_mask: True
random_seed: False
padding: 'SAME'
# training
train_spe: 4000
max_iters: 100000000
viz_max_out: 10
val_psteps: 2000
# data
data_flist:
# https://github.com/jiahuiyu/progressive_growing_of_gans_tf
celebahq: [
'data/celeba_hq/train_shuffled.flist',
'data/celeba_hq/validation_static_view.flist'
]
# http://mmlab.ie.cuhk.edu.hk/projects/celeba.html, please to use random_crop: True
celeba: [
'data/celeba/train_shuffled.flist',
'data/celeba/validation_static_view.flist'
]
# http://places2.csail.mit.edu/, please download the high-resolution dataset and use random_crop: True
places2: [
'data/places2/train_shuffled.flist',
'data/places2/validation_static_view.flist'
]
# http://www.image-net.org/, please use random_crop: True
imagenet: [
'data/imagenet/train_shuffled.flist',
'data/imagenet/validation_static_view.flist',
]
static_view_size: 30
img_shapes: [256, 256, 3]
height: 128
width: 128
max_delta_height: 32
max_delta_width: 32
batch_size: 16
vertical_margin: 0
horizontal_margin: 0
# loss
ae_loss: True
l1_loss: True
l1_loss_alpha: 1.
# to tune
guided: False
edge_threshold: 0.6