The unstructured
library provides open-source components for pre-processing text documents
such as PDFs, HTML and Word Documents. These components are packaged as bricks 🧱, which provide
users the building blocks they need to build pipelines targeted at the documents they care
about. Bricks in the library fall into three categories:
- 🧩 Partitioning bricks that break raw documents down into standard, structured elements.
- 🧹 Cleaning bricks that remove unwanted text from documents, such as boilerplate and sentence fragments.
- 🎭 Staging bricks that format data for downstream tasks, such as ML inference
and data labeling.
To install the library, run pip install unstructured
.
-
Using
pyenv
to manage virtualenv's is recommended but not necessary -
Create a virtualenv to work in and activate it, e.g. for one named
unstructured
:pyenv virtualenv 3.8.15 unstructured
pyenv activate unstructured
-
Run
make install
-
Optional:
- To install models and dependencies for processing images and PDFs locally, run
make install-local-inference
. - For processing image files,
tesseract
is required. See here for installation instructions. - For processing PDF files,
tesseract
andpoppler
are required. The pdf2image docs have instructions on installingpoppler
across various platforms.
- To install models and dependencies for processing images and PDFs locally, run
You can run this Colab notebook to run the examples below.
The following examples show how to get started with the unstructured
library.
You can parse TXT, HTML, PDF, EML and DOCX documents with one line of code!
See our documentation page for a full description
of the features in the library.
The easiest way to parse a document in unstructured is to use the partition
brick. If you
use partition
brick, unstructured
will detect the file type and route it to the appropriate
file-specific partitioning brick.
If you are using the partition
brick, ensure you first install libmagic
using the
instructions outlined here
partition
will always apply the default arguments. If you need
advanced features, use a document-specific brick. The partition
brick currently works for
.txt
, .docx
, .pptx
, .jpg
, .png
, .eml
, .html
, and .pdf
documents.
from unstructured.partition.auto import partition
elements = partition("example-docs/layout-parser-paper.pdf")
Run print("\n\n".join([str(el) for el in elements]))
to get a string representation of the
output, which looks like:
LayoutParser : A Unified Toolkit for Deep Learning Based Document Image Analysis
Zejiang Shen 1 ( (cid:0) ), Ruochen Zhang 2 , Melissa Dell 3 , Benjamin Charles Germain Lee 4 , Jacob Carlson 3 , and
Weining Li 5
Abstract. Recent advances in document image analysis (DIA) have been primarily driven by the application of neural
networks. Ideally, research outcomes could be easily deployed in production and extended for further investigation.
However, various factors like loosely organized codebases and sophisticated model configurations complicate the easy
reuse of im- portant innovations by a wide audience. Though there have been on-going efforts to improve reusability and
simplify deep learning (DL) model development in disciplines like natural language processing and computer vision, none
of them are optimized for challenges in the domain of DIA. This represents a major gap in the existing toolkit, as DIA
is central to academic research across a wide range of disciplines in the social sciences and humanities. This paper
introduces LayoutParser , an open-source library for streamlining the usage of DL in DIA research and applica- tions.
The core LayoutParser library comes with a set of simple and intuitive interfaces for applying and customizing DL models
for layout de- tection, character recognition, and many other document processing tasks. To promote extensibility,
LayoutParser also incorporates a community platform for sharing both pre-trained models and full document digiti- zation
pipelines. We demonstrate that LayoutParser is helpful for both lightweight and large-scale digitization pipelines in
real-word use cases. The library is publicly available at https://layout-parser.github.io
Keywords: Document Image Analysis · Deep Learning · Layout Analysis · Character Recognition · Open Source library ·
Toolkit.
Introduction
Deep Learning(DL)-based approaches are the state-of-the-art for a wide range of document image analysis (DIA) tasks
including document image classification [11,
You can parse an HTML document using the following workflow:
from unstructured.partition.html import partition_html
elements = partition_html("example-docs/example-10k.html")
print("\n\n".join([str(el) for el in elements[:5]]))
The print statement will show the following text:
UNITED STATES
SECURITIES AND EXCHANGE COMMISSION
Washington, D.C. 20549
FORM 10-K
ANNUAL REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934
And elements
will be a list of elements in the HTML document, similar to the following:
[<unstructured.documents.elements.Title at 0x169cbe820>,
<unstructured.documents.elements.NarrativeText at 0x169cbe8e0>,
<unstructured.documents.elements.NarrativeText at 0x169cbe3a0>]
You can use the following workflow to parse PDF documents.
from unstructured.partition.pdf import partition_pdf
elements = partition_pdf("example-docs/layout-parser-paper.pdf")
The output will look the same as the example from the document parsing section above.
The partition_email
function within unstructured
is helpful for parsing .eml
files. Common
e-mail clients such as Microsoft Outlook and Gmail support exproting e-mails as .eml
files.
partition_email
accepts filenames, file-like object, and raw text as input. The following
three snippets for parsing .eml
files are equivalent:
from unstructured.partition.email import partition_email
elements = partition_email(filename="example-docs/fake-email.eml")
with open("example-docs/fake-email.eml", "r") as f:
elements = partition_email(file=f)
with open("example-docs/fake-email.eml", "r") as f:
text = f.read()
elements = partition_email(text=text)
The elements
output will look like the following:
[<unstructured.documents.html.HTMLNarrativeText at 0x13ab14370>,
<unstructured.documents.html.HTMLTitle at 0x106877970>,
<unstructured.documents.html.HTMLListItem at 0x1068776a0>,
<unstructured.documents.html.HTMLListItem at 0x13fe4b0a0>]
Run print("\n\n".join([str(el) for el in elements]))
to get a string representation of the
output, which looks like:
This is a test email to use for unit tests.
Important points:
Roses are red
Violets are blue
The partition_text
function within unstructured
can be used to parse simple
text files into elements.
partition_text
accepts filenames, file-like object, and raw text as input. The following three snippets are for parsing text files:
from unstructured.partition.text import partition_text
elements = partition_text(filename="example-docs/fake-text.txt")
with open("example-docs/fake-text.txt", "r") as f:
elements = partition_text(file=f)
with open("example-docs/fake-text.txt", "r") as f:
text = f.read()
elements = partition_text(text=text)
The elements
output will look like the following:
[<unstructured.documents.html.HTMLNarrativeText at 0x13ab14370>,
<unstructured.documents.html.HTMLTitle at 0x106877970>,
<unstructured.documents.html.HTMLListItem at 0x1068776a0>,
<unstructured.documents.html.HTMLListItem at 0x13fe4b0a0>]
Run print("\n\n".join([str(el) for el in elements]))
to get a string representation of the
output, which looks like:
This is a test document to use for unit tests.
Important points:
Hamburgers are delicious
Dogs are the best
I love fuzzy blankets
See our security policy for information on how to report security vulnerabilities.
Section | Description |
---|---|
Company Website | Unstructured.io product and company info |
Documentation | Full API documentation |
Batch Processing | Ingesting batches of documents through Unstructured |