forked from princeton-nlp/tree-of-thought-llm
-
Notifications
You must be signed in to change notification settings - Fork 1
/
run.py
160 lines (136 loc) · 6.59 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import os
import json
import itertools
import argparse
import numpy as np
from functools import partial
from models import gpt, gpt_usage
from tasks import get_task
def get_value(task, x, y, n_evaluate_sample, cache_value=True):
value_prompt = task.value_prompt_wrap(x, y)
if cache_value and value_prompt in task.value_cache:
return task.value_cache[value_prompt]
value_outputs = gpt(value_prompt, n=n_evaluate_sample, stop=None)
value = task.value_outputs_unwrap(x, y, value_outputs)
if cache_value:
task.value_cache[value_prompt] = value
return value
def get_values(task, x, ys, n_evaluate_sample, cache_value=True):
values = []
local_value_cache = {}
for y in ys: # each partial output
if y in local_value_cache: # avoid duplicate candidates
value = 0
else:
value = get_value(task, x, y, n_evaluate_sample, cache_value=cache_value)
local_value_cache[y] = value
values.append(value)
return values
def get_votes(task, x, ys, n_evaluate_sample):
vote_prompt = task.vote_prompt_wrap(x, ys)
vote_outputs = gpt(vote_prompt, n=n_evaluate_sample, stop=None)
values = task.vote_outputs_unwrap(vote_outputs, len(ys))
return values
def get_proposals(task, x, y):
propose_prompt = task.propose_prompt_wrap(x, y)
proposals = gpt(propose_prompt, n=1, stop=None)[0].split('\n')
return [y + _ + '\n' for _ in proposals]
def get_samples(task, x, y, n_generate_sample, prompt_sample, stop):
if prompt_sample == 'standard':
prompt = task.standard_prompt_wrap(x, y)
elif prompt_sample == 'cot':
prompt = task.cot_prompt_wrap(x, y)
else:
raise ValueError(f'prompt_sample {prompt_sample} not recognized')
samples = gpt(prompt, n=n_generate_sample, stop=stop)
return [y + _ for _ in samples]
def solve(args, task, idx, to_print=True):
print(gpt)
x = task.get_input(idx) # input
ys = [''] # current output candidates
infos = []
for step in range(task.steps):
# generation
if args.method_generate == 'sample':
new_ys = [get_samples(task, x, y, args.n_generate_sample, prompt_sample=args.prompt_sample, stop=task.stops[step]) for y in ys]
elif args.method_generate == 'propose':
new_ys = [get_proposals(task, x, y) for y in ys]
new_ys = list(itertools.chain(*new_ys))
ids = list(range(len(new_ys)))
# evaluation
if args.method_evaluate == 'vote':
values = get_votes(task, x, new_ys, args.n_evaluate_sample)
elif args.method_evaluate == 'value':
values = get_values(task, x, new_ys, args.n_evaluate_sample)
# selection
if args.method_select == 'sample':
ps = np.array(values) / sum(values)
select_ids = np.random.choice(ids, size=args.n_select_sample, p=ps).tolist()
elif args.method_select == 'greedy':
select_ids = sorted(ids, key=lambda x: values[x], reverse=True)[:args.n_select_sample]
select_new_ys = [new_ys[select_id] for select_id in select_ids]
# log
if to_print:
sorted_new_ys, sorted_values = zip(*sorted(zip(new_ys, values), key=lambda x: x[1], reverse=True))
print(f'-- new_ys --: {sorted_new_ys}\n-- sol values --: {sorted_values}\n-- choices --: {select_new_ys}\n')
infos.append({'step': step, 'x': x, 'ys': ys, 'new_ys': new_ys, 'values': values, 'select_new_ys': select_new_ys})
ys = select_new_ys
if to_print:
print(ys)
return ys, {'steps': infos}
def naive_solve(args, task, idx, to_print=True):
x = task.get_input(idx) # input
ys = get_samples(task, x, '', args.n_generate_sample, args.prompt_sample, stop=None)
return ys, {}
def run(args):
task = get_task(args.task, args.task_file_path)
logs, cnt_avg, cnt_any = [], 0, 0
global gpt
gpt = partial(gpt, model=args.backend, temperature=args.temperature)
if args.naive_run:
file = f'logs/{args.task}/{args.backend}_{args.temperature}_naive_{args.prompt_sample}_sample_{args.n_generate_sample}_start{args.task_start_index}_end{args.task_end_index}.json'
else:
file = f'logs/{args.task}/{args.backend}_{args.temperature}_{args.method_generate}{args.n_generate_sample}_{args.method_evaluate}{args.n_evaluate_sample}_{args.method_select}{args.n_select_sample}_start{args.task_start_index}_end{args.task_end_index}.json'
os.makedirs(os.path.dirname(file), exist_ok=True)
for i in range(args.task_start_index, args.task_end_index):
# solve
if args.naive_run:
ys, info = naive_solve(args, task, i)
else:
ys, info = solve(args, task, i)
# log
infos = [task.test_output(i, y) for y in ys]
info.update({'idx': i, 'ys': ys, 'infos': infos, 'usage_so_far': gpt_usage(args.backend)})
logs.append(info)
with open(file, 'w') as f:
json.dump(logs, f, indent=4)
# log main metric
accs = [info['r'] for info in infos]
cnt_avg += sum(accs) / len(accs)
cnt_any += any(accs)
print(i, 'sum(accs)', sum(accs), 'cnt_avg', cnt_avg, 'cnt_any', cnt_any, '\n')
n = args.task_end_index - args.task_start_index
print(cnt_avg / n, cnt_any / n)
print('usage_so_far', gpt_usage(args.backend))
def parse_args():
args = argparse.ArgumentParser()
args.add_argument('--backend', type=str, choices=['gpt-4', 'gpt-3.5-turbo'], default='gpt-4')
args.add_argument('--temperature', type=float, default=0.7)
args.add_argument('--task', type=str, required=True, choices=['game24', 'text', 'crosswords'])
args.add_argument('--task_file_path', type=str, required=True)
args.add_argument('--task_start_index', type=int, default=900)
args.add_argument('--task_end_index', type=int, default=1000)
args.add_argument('--naive_run', action='store_true')
args.add_argument('--prompt_sample', type=str, choices=['standard', 'cot']) # only used when method_generate = sample, or naive_run
args.add_argument('--method_generate', type=str, choices=['sample', 'propose'])
args.add_argument('--method_evaluate', type=str, choices=['value', 'vote'])
args.add_argument('--method_select', type=str, choices=['sample', 'greedy'])
args.add_argument('--n_generate_sample', type=int, default=1) # only thing needed if naive_run
args.add_argument('--n_evaluate_sample', type=int, default=1)
args.add_argument('--n_select_sample', type=int, default=1)
args = args.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
print(args)
run(args)