forked from thuml/Large-Time-Series-Model
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
207 lines (181 loc) · 10.3 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import argparse
import os
import random
from datetime import datetime
import numpy as np
import torch
import torch.distributed as dist
from exp.exp_forecast import Exp_Forecast
from exp.exp_anomaly_detection import Exp_Anomaly_Detection
from exp.exp_imputation import Exp_Imputation
from utils.tools import HiddenPrints
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Large Time Series Model')
# basic config
parser.add_argument('--task_name', type=str, required=True, default='long_term_forecast',
help='task name, options:[forecast, imputation, anomaly_detection]')
parser.add_argument('--is_training', type=int, required=True, default=1, help='status')
parser.add_argument('--model_id', type=str, required=True, default='test', help='model id')
parser.add_argument('--model', type=str, required=True, default='Timer',
help='model name, options: [Timer TrmEncoder]')
parser.add_argument('--seed', type=int, default=0, help='random seed')
# data loader
parser.add_argument('--data', type=str, required=True, default='ETTm1', help='dataset type')
parser.add_argument('--root_path', type=str, default='./data/ETT/', help='root path of the data file')
parser.add_argument('--data_path', type=str, default='ETTh1.csv', help='data file')
parser.add_argument('--features', type=str, default='M',
help='forecasting task, options:[M, S, MS]; M:multivariate predict multivariate, S:univariate predict univariate, MS:multivariate predict univariate')
parser.add_argument('--target', type=str, default='OT', help='target feature in S or MS task')
parser.add_argument('--freq', type=str, default='h',
help='freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h')
parser.add_argument('--checkpoints', type=str, default='./checkpoints/', help='location of model checkpoints')
parser.add_argument('--inverse', action='store_true', help='inverse output data', default=False)
# model define
parser.add_argument('--d_model', type=int, default=512, help='dimension of model')
parser.add_argument('--n_heads', type=int, default=8, help='num of heads')
parser.add_argument('--e_layers', type=int, default=2, help='num of encoder layers')
parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers')
parser.add_argument('--d_ff', type=int, default=2048, help='dimension of fcn')
parser.add_argument('--factor', type=int, default=1, help='attn factor')
parser.add_argument('--distil', action='store_false',
help='whether to use distilling in encoder, using this argument means not using distilling',
default=True)
parser.add_argument('--dropout', type=float, default=0.1, help='dropout')
parser.add_argument('--embed', type=str, default='timeF',
help='time features encoding, options:[timeF, fixed, learned]')
parser.add_argument('--activation', type=str, default='gelu', help='activation')
parser.add_argument('--output_attention', action='store_true', help='whether to output attention in ecoder')
# optimization
parser.add_argument('--num_workers', type=int, default=10, help='data loader num workers')
parser.add_argument('--itr', type=int, default=1, help='experiments times')
parser.add_argument('--train_epochs', type=int, default=10, help='train epochs')
parser.add_argument('--batch_size', type=int, default=32, help='batch size of train input data')
parser.add_argument('--patience', type=int, default=3, help='early stopping patience')
parser.add_argument('--learning_rate', type=float, default=0.0001, help='optimizer learning rate')
parser.add_argument('--des', type=str, default='test', help='exp description')
parser.add_argument('--loss', type=str, default='MSE', help='loss function')
parser.add_argument('--lradj', type=str, default='type1', help='adjust learning rate')
parser.add_argument('--use_amp', action='store_true', help='use automatic mixed precision training', default=False)
# GPU
parser.add_argument('--use_gpu', type=bool, default=True, help='use gpu')
parser.add_argument('--gpu', type=int, default=0, help='gpu')
parser.add_argument('--use_multi_gpu', action='store_true', help='use multiple gpus', default=False)
parser.add_argument('--devices', type=str, default='0,1,2,3', help='device ids of multile gpus')
parser.add_argument('--stride', type=int, default=1, help='stride')
parser.add_argument('--ckpt_path', type=str, default='', help='ckpt file')
parser.add_argument('--finetune_epochs', type=int, default=10, help='train epochs')
parser.add_argument('--finetune_rate', type=float, default=0.1, help='finetune ratio')
parser.add_argument('--local_rank', type=int, default=0, help='local_rank')
parser.add_argument('--patch_len', type=int, default=24, help='input sequence length')
parser.add_argument('--subset_rand_ratio', type=float, default=1, help='mask ratio')
parser.add_argument('--data_type', type=str, default='custom', help='data_type')
parser.add_argument('--decay_fac', type=float, default=0.75)
# cosin decay
parser.add_argument('--cos_warm_up_steps', type=int, default=100)
parser.add_argument('--cos_max_decay_steps', type=int, default=60000)
parser.add_argument('--cos_max_decay_epoch', type=int, default=10)
parser.add_argument('--cos_max', type=float, default=1e-4)
parser.add_argument('--cos_min', type=float, default=2e-6)
# weight decay
parser.add_argument('--use_weight_decay', type=int, default=0, help='use_post_data')
parser.add_argument('--weight_decay', type=float, default=0.01)
# autoregressive configs
parser.add_argument('--use_ims', action='store_true', help='Iterated multi-step', default=False)
parser.add_argument('--output_len', type=int, default=96, help='output len')
parser.add_argument('--output_len_list', type=int, nargs="+", help="output_len_list")
# train_test
parser.add_argument('--train_test', type=int, default=1, help='train_test')
parser.add_argument('--is_finetuning', type=int, default=1, help='status')
# forecasting task
parser.add_argument('--seq_len', type=int, default=96, help='input sequence length')
parser.add_argument('--label_len', type=int, default=48, help='start token length')
parser.add_argument('--pred_len', type=int, default=96, help='prediction sequence length')
# imputation task
parser.add_argument('--mask_rate', type=float, default=0.25, help='mask ratio')
args = parser.parse_args()
fix_seed = args.seed
random.seed(fix_seed)
torch.manual_seed(fix_seed)
np.random.seed(fix_seed)
args.use_gpu = True if torch.cuda.is_available() and args.use_gpu else False
if args.use_multi_gpu:
ip = os.environ.get("MASTER_ADDR", "127.0.0.1")
port = os.environ.get("MASTER_PORT", "64209")
hosts = int(os.environ.get("WORLD_SIZE", "8")) # number of nodes
rank = int(os.environ.get("RANK", "0")) # node id
local_rank = int(os.environ.get("LOCAL_RANK", "0"))
gpus = torch.cuda.device_count() # gpus per node
args.local_rank = local_rank
print(
'ip: {}, port: {}, hosts: {}, rank: {}, local_rank: {}, gpus: {}'.format(ip, port, hosts, rank, local_rank,
gpus))
dist.init_process_group(backend="nccl", init_method=f"tcp://{ip}:{port}", world_size=hosts, rank=rank)
print('init_process_group finished')
torch.cuda.set_device(local_rank)
if args.task_name == 'imputation':
Exp = Exp_Imputation
elif args.task_name == 'anomaly_detection':
Exp = Exp_Anomaly_Detection
elif args.task_name == 'forecast':
Exp = Exp_Forecast
else:
raise ValueError('task name not found')
with HiddenPrints(int(os.environ.get("LOCAL_RANK", "0"))):
print('Args in experiment:')
print(args)
if args.is_finetuning:
for ii in range(args.itr):
# setting record of experiments
setting = '{}_{}_{}_{}_ft{}_sl{}_ll{}_pl{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_fc{}_eb{}_dt{}_{}'.format(
args.task_name,
args.model_id,
args.model,
args.data,
args.features,
args.seq_len,
args.label_len,
args.pred_len,
args.patch_len,
args.d_model,
args.n_heads,
args.e_layers,
args.d_layers,
args.d_ff,
args.factor,
args.embed,
args.distil,
args.des,
ii)
setting += datetime.now().strftime("%y-%m-%d_%H-%M-%S")
exp = Exp(args) # set experiments
print('>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting))
exp.finetune(setting)
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
exp.test(setting)
torch.cuda.empty_cache()
else:
ii = 0
setting = '{}_{}_{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_fc{}_eb{}_dt{}_{}'.format(
args.task_name,
args.model_id,
args.model,
args.data,
args.features,
args.seq_len,
args.label_len,
args.pred_len,
args.d_model,
args.n_heads,
args.e_layers,
args.d_layers,
args.d_ff,
args.factor,
args.embed,
args.distil,
args.des,
ii)
setting += datetime.now().strftime("%y-%m-%d_%H-%M-%S")
exp = Exp(args) # set experiments
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
exp.test(setting, test=1)
torch.cuda.empty_cache()