forked from cgpotts/cs224u
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtorch_rnn_classifier.py
400 lines (352 loc) · 13.4 KB
/
torch_rnn_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
import numpy as np
from operator import itemgetter
import torch
import torch.nn as nn
import torch.utils.data
from torch_model_base import TorchModelBase
from utils import progress_bar
__author__ = "Christopher Potts"
__version__ = "CS224u, Stanford, Spring 2020"
class TorchRNNDataset(torch.utils.data.Dataset):
def __init__(self, sequences, seq_lengths, y):
assert len(sequences) == len(y)
assert len(sequences) == len(seq_lengths)
self.sequences = sequences
self.seq_lengths = seq_lengths
self.y = y
@staticmethod
def collate_fn(batch):
X, seq_lengths, y = zip(*batch)
X = torch.nn.utils.rnn.pad_sequence(X, batch_first=True)
seq_lengths = torch.tensor(seq_lengths, dtype=torch.long)
y = torch.tensor(y, dtype=torch.long)
return X, seq_lengths, y
def __len__(self):
return len(self.sequences)
def __getitem__(self, idx):
return (self.sequences[idx], self.seq_lengths[idx], self.y[idx])
class TorchRNNClassifierModel(nn.Module):
def __init__(self,
vocab_size,
embed_dim,
embedding,
use_embedding,
hidden_dim,
output_dim,
bidirectional,
device):
super(TorchRNNClassifierModel, self).__init__()
self.use_embedding = use_embedding
self.device = device
self.embed_dim = embed_dim
self.bidirectional = bidirectional
# Graph
if self.use_embedding:
self.embedding = self._define_embedding(
embedding, vocab_size, self.embed_dim)
self.embed_dim = self.embedding.embedding_dim
self.rnn = nn.LSTM(
input_size=self.embed_dim,
hidden_size=hidden_dim,
batch_first=True,
bidirectional=bidirectional)
if bidirectional:
classifier_dim = hidden_dim * 2
else:
classifier_dim = hidden_dim
self.classifier_layer = nn.Linear(classifier_dim, output_dim)
def forward(self, X, seq_lengths):
state = self.rnn_forward(X, seq_lengths, self.rnn)
logits = self.classifier_layer(state)
return logits
def rnn_forward(self, X, seq_lengths, rnn):
X = torch.nn.utils.rnn.pad_sequence(X, batch_first=True)
X = X.to(self.device, non_blocking=True)
seq_lengths = seq_lengths.to(self.device)
seq_lengths, sort_idx = seq_lengths.sort(0, descending=True)
X = X[sort_idx]
if self.use_embedding:
embs = self.embedding(X)
else:
embs = X
embs = torch.nn.utils.rnn.pack_padded_sequence(
embs, batch_first=True, lengths=seq_lengths)
outputs, state = rnn(embs)
state = self.get_batch_final_states(state)
if self.bidirectional:
state = torch.cat((state[0], state[1]), dim=1)
_, unsort_idx = sort_idx.sort(0)
state = state[unsort_idx]
return state
def get_batch_final_states(self, state):
if self.rnn.__class__.__name__ == 'LSTM':
return state[0].squeeze(0)
else:
return state.squeeze(0)
@staticmethod
def _define_embedding(embedding, vocab_size, embed_dim):
if embedding is None:
return nn.Embedding(vocab_size, embed_dim)
else:
embedding = torch.tensor(embedding, dtype=torch.float)
return nn.Embedding.from_pretrained(embedding)
class TorchRNNClassifier(TorchModelBase):
"""LSTM-based Recurrent Neural Network for classification problems.
The network will work for any kind of classification task.
Parameters
----------
vocab : list of str
This should be the vocabulary. It needs to be aligned with
`embedding` in the sense that the ith element of vocab
should be represented by the ith row of `embedding`. Ignored
if `use_embedding=False`.
embedding : np.array or None
Each row represents a word in `vocab`, as described above.
use_embedding : bool
If True, then incoming examples are presumed to be lists of
elements of the vocabulary. If False, then they are presumed
to be lists of vectors. In this case, the `embedding` and
`embed_dim` arguments are ignored, since no embedding is needed
and `embed_dim` is set by the nature of the incoming vectors.
embed_dim : int
Dimensionality for the initial embeddings. This is ignored
if `embedding` is not None, as a specified value there
determines this value. Also ignored if `use_embedding=False`.
hidden_dim : int
Dimensionality of the hidden layer.
bidirectional : bool
If True, then the final hidden states from passes in both
directions are used.
max_iter : int
Maximum number of training epochs.
eta : float
Learning rate.
optimizer : PyTorch optimizer
Default is `torch.optim.Adam`.
l2_strength : float
L2 regularization strength. Default 0 is no regularization.
device : 'cpu' or 'cuda'
The default is to use 'cuda' iff available
warm_start : bool
If True, calling `fit` will resume training with previously
defined trainable parameters. If False, calling `fit` will
reinitialize all trainable parameters. Default: False.
"""
def __init__(self,
vocab,
embedding=None,
use_embedding=True,
embed_dim=50,
bidirectional=False,
**kwargs):
self.vocab = vocab
self.embedding = embedding
self.use_embedding = use_embedding
self.embed_dim = embed_dim
self.bidirectional = bidirectional
super(TorchRNNClassifier, self).__init__(**kwargs)
self.params += ['embed_dim', 'embedding', 'use_embedding', 'bidirectional']
# The base class has this attribute, but this model doesn't,
# so we remove it to avoid misleading people:
delattr(self, 'hidden_activation')
self.params.remove('hidden_activation')
def build_dataset(self, X, y):
X, seq_lengths = self._prepare_dataset(X)
return TorchRNNDataset(X, seq_lengths, y)
def build_graph(self):
return TorchRNNClassifierModel(
vocab_size=len(self.vocab),
embedding=self.embedding,
use_embedding=self.use_embedding,
embed_dim=self.embed_dim,
hidden_dim=self.hidden_dim,
output_dim=self.n_classes_,
bidirectional=self.bidirectional,
device=self.device)
def fit(self, X, y, **kwargs):
"""Standard `fit` method.
Parameters
----------
X : np.array
y : array-like
kwargs : dict
For passing other parameters. If 'X_dev' is included,
then performance is monitored every 10 epochs; use
`dev_iter` to control this number.
Returns
-------
self
"""
# Incremental performance:
X_dev = kwargs.get('X_dev')
if X_dev is not None:
dev_iter = kwargs.get('dev_iter', 10)
# Data prep:
self.classes_ = sorted(set(y))
self.n_classes_ = len(self.classes_)
class2index = dict(zip(self.classes_, range(self.n_classes_)))
y = [class2index[label] for label in y]
dataset = self.build_dataset(X, y)
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=self.batch_size,
shuffle=True,
drop_last=False,
pin_memory=True,
collate_fn=dataset.collate_fn)
if not self.use_embedding:
# Infer `embed_dim` from `X` in this case:
self.embed_dim = X[0][0].shape[0]
# Graph:
if not self.warm_start or not hasattr(self, "model"):
self.model = self.build_graph()
self.model.to(self.device)
self.model.train()
# Make sure this value is up-to-date; self.`model` might change
# it if it creates an embedding:
self.embed_dim = self.model.embed_dim
# Optimization:
loss = nn.CrossEntropyLoss()
optimizer = self.optimizer(
self.model.parameters(),
lr=self.eta,
weight_decay=self.l2_strength)
# Train:
for iteration in range(1, self.max_iter+1):
epoch_error = 0.0
for X_batch, batch_seq_lengths, y_batch in dataloader:
y_batch = y_batch.to(self.device, non_blocking=True)
batch_preds = self.model(X_batch, batch_seq_lengths)
err = loss(batch_preds, y_batch)
epoch_error += err.item()
# Backprop:
optimizer.zero_grad()
err.backward()
optimizer.step()
# Incremental predictions where possible:
if X_dev is not None and iteration > 0 and iteration % dev_iter == 0:
self.dev_predictions[iteration] = self.predict(X_dev)
self.model.train()
self.errors.append(epoch_error)
progress_bar("Finished epoch {} of {}; error is {}".format(
iteration, self.max_iter, epoch_error))
return self
def predict_proba(self, X):
"""Predicted probabilities for the examples in `X`.
Parameters
----------
X : np.array
Returns
-------
np.array with shape (len(X), self.n_classes_)
"""
self.model.eval()
with torch.no_grad():
self.model.to(self.device)
X, seq_lengths = self._prepare_dataset(X)
preds = self.model(X, seq_lengths)
preds = torch.softmax(preds, dim=1).cpu().numpy()
return preds
def predict(self, X):
"""Predicted labels for the examples in `X`. These are converted
from the integers that PyTorch needs back to their original
values in `self.classes_`.
Parameters
----------
X : np.array
Returns
-------
list of length len(X)
"""
probs = self.predict_proba(X)
return [self.classes_[i] for i in probs.argmax(axis=1)]
def _prepare_dataset(self, X):
"""Internal method for preprocessing a set of examples. If
`self.use_embedding=True`, then `X` is transformed into a list
of lists of indices. Otherwise, `X` is assumed to already
contain the vectors we want to process. In both situations,
we measure the lengths of the sequences in `X`.
Parameters
----------
X : list of lists of tokens, or list of np.array of vectors
Returns
-------
list of lists of ints, or list of np.array of vectors,
and `torch.LongTensor` of sequence lengths.
"""
new_X = []
seq_lengths = []
if self.use_embedding:
index = dict(zip(self.vocab, range(len(self.vocab))))
unk_index = index['$UNK']
for ex in X:
seq = [index.get(w, unk_index) for w in ex]
seq = torch.tensor(seq, dtype=torch.long)
new_X.append(seq)
seq_lengths.append(len(seq))
else:
new_X = [torch.FloatTensor(ex) for ex in X]
seq_lengths = [len(ex) for ex in X]
return new_X, torch.LongTensor(seq_lengths)
def simple_example(initial_embedding=False, use_embedding=True):
vocab = ['a', 'b', '$UNK']
# No b before an a
train = [
[list('ab'), 'good'],
[list('aab'), 'good'],
[list('abb'), 'good'],
[list('aabb'), 'good'],
[list('ba'), 'bad'],
[list('baa'), 'bad'],
[list('bba'), 'bad'],
[list('bbaa'), 'bad'],
[list('aba'), 'bad']
]
test = [
[list('baaa'), 'bad'],
[list('abaa'), 'bad'],
[list('bbaa'), 'bad'],
[list('aaab'), 'good'],
[list('aaabb'), 'good']
]
if initial_embedding:
import numpy as np
# `embed_dim=60` to make sure that it gets changed internally:
embedding = np.random.uniform(
low=-1.0, high=1.0, size=(len(vocab), 60))
else:
embedding = None
mod = TorchRNNClassifier(
vocab=vocab,
max_iter=100,
embed_dim=50,
embedding=embedding,
use_embedding=use_embedding,
bidirectional=False,
hidden_dim=50)
X, y = zip(*train)
X_test, y_test = zip(*test)
# Just to illustrate how we can process incoming sequences of
# vectors, we create an embedding and use it to preprocess the
# train and test sets:
if not use_embedding:
import numpy as np
from copy import copy
# `embed_dim=60` to make sure that it gets changed internally:
embedding = np.random.uniform(
low=-1.0, high=1.0, size=(len(vocab), 60))
X = [[embedding[vocab.index(w)] for w in ex] for ex in X]
# So we can display the examples sensibly:
X_test_orig = copy(X_test)
X_test = [[embedding[vocab.index(w)] for w in ex] for ex in X_test]
else:
X_test_orig = X_test
mod.fit(X, y)
preds = mod.predict(X_test)
print("\nPredictions:")
for ex, pred, gold in zip(X_test_orig, preds, y_test):
score = "correct" if pred == gold else "incorrect"
print("{0:>6} - predicted: {1:>4}; actual: {2:>4} - {3}".format(
"".join(ex), pred, gold, score))
if __name__ == '__main__':
simple_example()