From d92eb30bb615a301e2c7696ba41383d324b3d31a Mon Sep 17 00:00:00 2001 From: shlear <116897538+shlear@users.noreply.github.com> Date: Tue, 31 Jan 2023 14:22:22 +0300 Subject: [PATCH] =?UTF-8?q?=D0=A1=D0=BE=D0=B7=D0=B4=D0=B0=D0=BD=D0=BE=20?= =?UTF-8?q?=D1=81=20=D0=BF=D0=BE=D0=BC=D0=BE=D1=89=D1=8C=D1=8E=20Colaborat?= =?UTF-8?q?ory?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- 01-intro/DataHandling.ipynb | 1666 ++--------------------------------- 1 file changed, 72 insertions(+), 1594 deletions(-) diff --git a/01-intro/DataHandling.ipynb b/01-intro/DataHandling.ipynb index 403fd1b..6bcfc91 100644 --- a/01-intro/DataHandling.ipynb +++ b/01-intro/DataHandling.ipynb @@ -13,43 +13,31 @@ { "cell_type": "markdown", "metadata": { - "id": "pfojW1Laghph" + "id": "n_nitmHugcSH" }, "source": [ - "During the practical sessions of the course we are going to use [Python programming language](https://www.python.org) in the [Google Colab environment](https://colab.research.google.com). Alternatively you can download some other python distribution, e.g. [anaconda](https://www.anaconda.com/) and run jupyter locally (see the [docs](https://jupyter.readthedocs.io/en/latest/running.html) for more info)." + "# Welcome" ] }, { - "cell_type": "code", - "execution_count": 1, + "cell_type": "markdown", "metadata": { - "id": "WAa6UFGdwp2z", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "372c73c8-310c-4edd-b448-ef33d866360c" + "id": "pfojW1Laghph" }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Python 3.8.16\n" - ] - } - ], "source": [ - "!python --version" + "During the practical sessions of the course we are going to use [Python programming language](https://www.python.org) in the [Google Colab environment](https://colab.research.google.com). Alternatively you can download some other python distribution, e.g. [anaconda](https://www.anaconda.com/) and run jupyter locally (see the [docs](https://jupyter.readthedocs.io/en/latest/running.html) for more info)." ] }, { "cell_type": "code", - "source": [], + "execution_count": null, "metadata": { - "id": "eeHtY_2sV5eO" + "id": "WAa6UFGdwp2z" }, - "execution_count": null, - "outputs": [] + "outputs": [], + "source": [ + "!python --version" + ] }, { "cell_type": "markdown", @@ -70,15 +58,6 @@ "Don't forget to follow [PEP-8](https://peps.python.org/pep-0008/). You may also check other[style guides](https://google.github.io/styleguide/pyguide.html)." ] }, - { - "cell_type": "markdown", - "metadata": { - "id": "n_nitmHugcSH" - }, - "source": [ - "# Welcome" - ] - }, { "cell_type": "markdown", "metadata": { @@ -205,7 +184,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": { "id": "5oQdc9MIJXVW" }, @@ -275,29 +254,11 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": { - "id": "gcTokNL-JXWV", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "c4aa70ae-329f-4b7a-c1d3-3af55e516014" + "id": "gcTokNL-JXWV" }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "a = [1 2 3 4 5]\n", - "b = [5 4 3 2 1]\n", - "a + 1 = [2 3 4 5 6]\n", - "a * 2 = [ 2 4 6 8 10]\n", - "a == 2 [False True False False False]\n", - "a + b = [6 6 6 6 6]\n", - "a * b = [5 8 9 8 5]\n" - ] - } - ], + "outputs": [], "source": [ "import numpy as np\n", "\n", @@ -983,256 +944,12 @@ }, { "cell_type": "code", - "source": [ - "! pip install -q kaggle\n", - "\n", - "from google.colab import files\n", - "\n", - "files.upload()" - ], - "metadata": { - "id": "XrJUrAW6XMQj", - "outputId": "fb400dad-5dcc-4a2b-9ea9-1ca33c768ace", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 92 - } - }, - "execution_count": 9, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "" - ], - "text/html": [ - "\n", - " \n", - " \n", - " Upload widget is only available when the cell has been executed in the\n", - " current browser session. Please rerun this cell to enable.\n", - " \n", - " " - ] - }, - "metadata": {} - }, - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Saving kaggle.json to kaggle.json\n" - ] - }, - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "{'kaggle.json': b'{\"username\":\"egorbevz\",\"key\":\"60602a5f249baeadc5d7ef09fdbe23af\"}'}" - ] - }, - "metadata": {}, - "execution_count": 9 - } - ] - }, - { - "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": { "collapsed": true, - "id": "dBaZHbB1Dt5Z", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "67761bd4-f659-4077-98e9-770736e650db" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "mkdir: cannot create directory ‘/root/.kaggle’: File exists\n" - ] - } - ], + "id": "dBaZHbB1Dt5Z" + }, + "outputs": [], "source": [ "!mkdir ~/.kaggle\n", "!cp kaggle.json ~/.kaggle/\n", @@ -1241,44 +958,11 @@ }, { "cell_type": "code", - "execution_count": 11, - "metadata": { - "id": "ZLUjnvLAuCYU", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "17d0f16b-75f7-44ec-c387-c9312cb65c28" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "ref title size lastUpdated downloadCount voteCount usabilityRating \n", - "------------------------------------------------------------- -------------------------------------------------- ----- ------------------- ------------- --------- --------------- \n", - "gauravduttakiit/tabular-playground-series-jan-2022 Tabular Playground Series - Jan 2022 230KB 2022-01-04 08:56:10 84 9 0.7647059 \n", - "carlmcbrideellis/gdp-20152019-finland-norway-and-sweden GDP data for TPS competitions 769B 2022-09-01 08:38:31 742 54 1.0 \n", - "lucamassaron/festivities-in-finland-norway-sweden-tsp-0122 Festivities in Finland, Norway, Sweden (TSP 01-22) 3KB 2022-01-23 23:41:23 62 21 0.7647059 \n", - "sergiosaharovskiy/tps2022novfeather TPS2022NOVFEATHER 1GB 2022-11-03 03:19:18 83 23 0.88235295 \n", - "lucamassaron/tabular-playground-series-sep-2021 Tabular Playground Series - Sep 2021 597MB 2022-04-04 22:29:02 21 6 0.8235294 \n", - "samuelcortinhas/gdp-of-european-countries GDP of European countries 795B 2022-09-01 13:15:51 545 35 1.0 \n", - "mustafakeser4/tpsoct22-parquet TPS-OCT-22 Parquet 3GB 2022-10-19 17:41:31 36 13 1.0 \n", - "samuelcortinhas/gdp-per-capita-finland-norway-sweden-201519 GDP per capita: Finland, Norway, Sweden (2015-19) 362B 2022-01-11 10:43:40 273 27 0.9411765 \n", - "criskiev/november21 Original train.csv for TPS Nov 2021 225MB 2021-11-10 21:29:55 173 17 0.47058824 \n", - "hrshuvo/tabular-sep-21 tabular_sep_21 150MB 2021-09-18 12:30:02 15 8 0.64705884 \n", - "rhythmcam/pycaret-regression-auto-model PyCaret Regression Blend Model 968B 2022-01-16 10:44:45 10 9 0.875 \n", - "jcaliz/tps-sep22-covid-data TPS Sep22: Covid Data 🦠 67KB 2022-09-01 16:34:50 373 21 1.0 \n", - "kaaveland/tpsdec2021parquet tps-dec-2021-parquet 152MB 2021-12-06 16:03:32 60 5 0.5625 \n", - "satoshiss/dataset-for-2022-tps-sep Dataset for 2022 TPS Sep 37KB 2022-09-07 14:12:42 22 8 0.7058824 \n", - "alexryzhkov/tps-competitions-private-leaderboards TPS competitions private leaderboards 414KB 2021-08-01 12:42:58 18 6 0.7352941 \n", - "kavehshahhosseini/tpsoctclassicfeatureimportance TPS Oct 2021 - Classic Feature Importance 3KB 2021-10-22 09:47:56 10 8 0.8235294 \n", - "mathurinache/tabularplaygroundseriesnov2021augmented tabular-playground-series-nov-2021-augmented 2GB 2021-11-21 21:08:29 5 6 0.3529412 \n", - "towhidultonmoy/tabular-playground-series-sep21-processed-data Tabular Playground Series Sep-21 processed data 278MB 2021-09-16 18:13:07 3 2 0.47058824 \n", - "sandeepmajumdar/tpssep22-gdp-per-capita-20172021 TPSSEP22 GDP Per Capita & Growth Rate 2017-2021 1KB 2022-09-09 16:46:04 12 8 0.9411765 \n", - "aphilip/resampled-traincsv SMOTE resampled May Tabular Playground Series 3MB 2021-05-25 18:40:45 7 2 0.3529412 \n" - ] - } - ], + "execution_count": null, + "metadata": { + "id": "ZLUjnvLAuCYU" + }, + "outputs": [], "source": [ "!kaggle datasets list -s tabular-playground-series" ] @@ -1294,25 +978,11 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": { - "id": "uX-OE6_kDPuO", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "c97d312f-b0a7-4267-bae3-a591de2d7c30" + "id": "uX-OE6_kDPuO" }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Downloading tabular-playground-series-aug-2022.zip to /content\n", - "\r 0% 0.00/2.27M [00:00\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
product_codeloadingattribute_0attribute_1attribute_2attribute_3measurement_0measurement_1measurement_2measurement_3...measurement_9measurement_10measurement_11measurement_12measurement_13measurement_14measurement_15measurement_16measurement_17failure
id
20085D92.47material_7material_566318917.006...11.95516.53820.36412.98216.49613.18915.14315.743769.1530
3226A95.84material_7material_8951081118.467...11.44516.413NaN11.32215.256NaN14.57016.803727.3501
3200A138.67material_7material_895111617.363...11.11315.46620.78711.14915.21514.04115.16515.960NaN0
10058B149.84material_5material_588261318.665...13.12618.98820.69411.29213.49515.07815.83315.4061107.4790
25618E67.50material_7material_669510618.874...11.63815.27716.9449.67416.10518.10715.84014.288729.5340
\n", - "

5 rows × 25 columns

\n", - "
\n", - " \n", - " \n", - " \n", - "\n", - " \n", - "
\n", - " \n", - " " - ] - }, - "metadata": {}, - "execution_count": 24 - } - ], + "execution_count": null, + "metadata": { + "id": "Zpm0KYxF3jGs" + }, + "outputs": [], "source": [ "data.sample(5)" ] @@ -1868,251 +1196,11 @@ }, { "cell_type": "code", - "execution_count": 18, - "metadata": { - "id": "lI0C2cG8g3To", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 237 - }, - "outputId": "89bbcbcb-608b-4335-f835-789c57f44f02" - }, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - " product_code loading attribute_0 attribute_1 attribute_2 attribute_3 \\\n", - "id \n", - "2 A 84.89 material_7 material_8 9 5 \n", - "3 A 82.43 material_7 material_8 9 5 \n", - "\n", - " measurement_0 measurement_1 measurement_2 measurement_3 ... \\\n", - "id ... \n", - "2 14 3 3 18.213 ... \n", - "3 12 1 5 18.057 ... \n", - "\n", - " measurement_9 measurement_10 measurement_11 measurement_12 \\\n", - "id \n", - "2 12.448 17.947 17.915 11.755 \n", - "3 12.715 15.607 NaN 13.798 \n", - "\n", - " measurement_13 measurement_14 measurement_15 measurement_16 \\\n", - "id \n", - "2 14.732 15.425 14.395 15.631 \n", - "3 16.711 18.631 14.094 17.946 \n", - "\n", - " measurement_17 failure \n", - "id \n", - "2 682.057 0 \n", - "3 663.376 0 \n", - "\n", - "[2 rows x 25 columns]" - ], - "text/html": [ - "\n", - "
\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
product_codeloadingattribute_0attribute_1attribute_2attribute_3measurement_0measurement_1measurement_2measurement_3...measurement_9measurement_10measurement_11measurement_12measurement_13measurement_14measurement_15measurement_16measurement_17failure
id
2A84.89material_7material_895143318.213...12.44817.94717.91511.75514.73215.42514.39515.631682.0570
3A82.43material_7material_895121518.057...12.71515.607NaN13.79816.71118.63114.09417.946663.3760
\n", - "

2 rows × 25 columns

\n", - "
\n", - " \n", - " \n", - " \n", - "\n", - " \n", - "
\n", - "
\n", - " " - ] - }, - "metadata": {}, - "execution_count": 18 - } - ], + "execution_count": null, + "metadata": { + "id": "lI0C2cG8g3To" + }, + "outputs": [], "source": [ "data.loc[2:3]" ] @@ -2148,512 +1236,11 @@ }, { "cell_type": "code", - "execution_count": 17, - "metadata": { - "id": "aMkc1lqHPjAo", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 519 - }, - "outputId": "bd26b003-0eae-4276-b36b-716a93d51b38" - }, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - " product_code loading attribute_0 attribute_1 attribute_2 attribute_3 \\\n", - "id \n", - "5101 B 81.46 material_5 material_5 8 8 \n", - "5107 B 84.61 material_5 material_5 8 8 \n", - "5109 B 75.77 material_5 material_5 8 8 \n", - "5118 B 72.22 material_5 material_5 8 8 \n", - "5128 B 87.51 material_5 material_5 8 8 \n", - "... ... ... ... ... ... ... \n", - "10322 B 84.88 material_5 material_5 8 8 \n", - "10323 B 80.23 material_5 material_5 8 8 \n", - "10336 B 82.36 material_5 material_5 8 8 \n", - "10345 B 67.82 material_5 material_5 8 8 \n", - "10349 B 82.07 material_5 material_5 8 8 \n", - "\n", - " measurement_0 measurement_1 measurement_2 measurement_3 ... \\\n", - "id ... \n", - "5101 12 12 4 19.267 ... \n", - "5107 11 12 9 18.121 ... \n", - "5109 4 8 8 18.835 ... \n", - "5118 4 9 8 17.253 ... \n", - "5128 5 0 17 17.797 ... \n", - "... ... ... ... ... ... \n", - "10322 7 15 12 17.662 ... \n", - "10323 3 10 3 19.524 ... \n", - "10336 6 7 8 17.928 ... \n", - "10345 8 8 1 17.043 ... \n", - "10349 2 4 11 17.506 ... \n", - "\n", - " measurement_9 measurement_10 measurement_11 measurement_12 \\\n", - "id \n", - "5101 12.261 14.961 18.640 11.267 \n", - "5107 10.187 14.289 19.604 10.140 \n", - "5109 12.155 15.743 19.994 11.501 \n", - "5118 12.512 18.206 17.990 12.463 \n", - "5128 9.331 18.709 18.803 13.463 \n", - "... ... ... ... ... \n", - "10322 10.868 13.458 21.590 12.423 \n", - "10323 NaN 16.906 16.166 12.205 \n", - "10336 11.621 15.560 19.379 12.188 \n", - "10345 11.634 14.884 18.053 NaN \n", - "10349 12.076 15.741 19.937 10.956 \n", - "\n", - " measurement_13 measurement_14 measurement_15 measurement_16 \\\n", - "id \n", - "5101 16.658 15.403 14.786 17.417 \n", - "5107 NaN 18.255 17.481 16.179 \n", - "5109 15.533 15.229 16.610 15.822 \n", - "5118 18.548 16.440 15.898 18.465 \n", - "5128 15.823 16.050 13.789 15.441 \n", - "... ... ... ... ... \n", - "10322 11.839 17.307 13.613 14.789 \n", - "10323 18.944 16.632 NaN 13.967 \n", - "10336 18.636 17.738 NaN 20.096 \n", - "10345 17.657 NaN 14.111 17.733 \n", - "10349 14.832 17.106 16.910 15.281 \n", - "\n", - " measurement_17 failure \n", - "id \n", - "5101 761.784 0 \n", - "5107 592.946 1 \n", - "5109 997.441 0 \n", - "5118 794.101 0 \n", - "5128 724.598 1 \n", - "... ... ... \n", - "10322 640.496 1 \n", - "10323 828.781 0 \n", - "10336 560.835 0 \n", - "10345 775.707 0 \n", - "10349 926.387 0 \n", - "\n", - "[786 rows x 25 columns]" - ], - "text/html": [ - "\n", - "
\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
product_codeloadingattribute_0attribute_1attribute_2attribute_3measurement_0measurement_1measurement_2measurement_3...measurement_9measurement_10measurement_11measurement_12measurement_13measurement_14measurement_15measurement_16measurement_17failure
id
5101B81.46material_5material_5881212419.267...12.26114.96118.64011.26716.65815.40314.78617.417761.7840
5107B84.61material_5material_5881112918.121...10.18714.28919.60410.140NaN18.25517.48116.179592.9461
5109B75.77material_5material_58848818.835...12.15515.74319.99411.50115.53315.22916.61015.822997.4410
5118B72.22material_5material_58849817.253...12.51218.20617.99012.46318.54816.44015.89818.465794.1010
5128B87.51material_5material_588501717.797...9.33118.70918.80313.46315.82316.05013.78915.441724.5981
..................................................................
10322B84.88material_5material_5887151217.662...10.86813.45821.59012.42311.83917.30713.61314.789640.4961
10323B80.23material_5material_588310319.524...NaN16.90616.16612.20518.94416.632NaN13.967828.7810
10336B82.36material_5material_58867817.928...11.62115.56019.37912.18818.63617.738NaN20.096560.8350
10345B67.82material_5material_58888117.043...11.63414.88418.053NaN17.657NaN14.11117.733775.7070
10349B82.07material_5material_588241117.506...12.07615.74119.93710.95614.83217.10616.91015.281926.3870
\n", - "

786 rows × 25 columns

\n", - "
\n", - " \n", - " \n", - " \n", - "\n", - " \n", - "
\n", - "
\n", - " " - ] - }, - "metadata": {}, - "execution_count": 17 - } - ], + "execution_count": null, + "metadata": { + "id": "aMkc1lqHPjAo" + }, + "outputs": [], "source": [ "data.loc[(data['loading'] < 90) & (data['product_code'] == np.random.choice(data.product_code.unique()))]" ] @@ -2815,51 +1402,11 @@ }, { "cell_type": "code", - "execution_count": 16, - "metadata": { - "id": "uE53osRgJXWs", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "fbd7c386-305d-4e9d-825c-92ec89d5276f" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Max measurement_17: 1312.794\n", - "\n", - "The study with the max measurement_17:\n", - " product_code A\n", - "loading 109.5\n", - "attribute_0 material_7\n", - "attribute_1 material_8\n", - "attribute_2 9\n", - "attribute_3 5\n", - "measurement_0 9\n", - "measurement_1 6\n", - "measurement_2 5\n", - "measurement_3 18.111\n", - "measurement_4 11.886\n", - "measurement_5 17.354\n", - "measurement_6 18.558\n", - "measurement_7 11.54\n", - "measurement_8 19.887\n", - "measurement_9 11.557\n", - "measurement_10 15.965\n", - "measurement_11 19.604\n", - "measurement_12 14.091\n", - "measurement_13 15.674\n", - "measurement_14 13.327\n", - "measurement_15 13.535\n", - "measurement_16 15.408\n", - "measurement_17 NaN\n", - "failure 0\n", - "Name: 9, dtype: object\n" - ] - } - ], + "execution_count": null, + "metadata": { + "id": "uE53osRgJXWs" + }, + "outputs": [], "source": [ "# calling np.max on a pure pandas column:\n", "column_name = 'measurement_17'\n", @@ -2988,53 +1535,11 @@ }, { "cell_type": "code", - "source": [ - "float_cols = [c for c in data.columns if data[c].dtype == float]\n", - "print (float_cols)" - ], - "metadata": { - "id": "xt8tv21yxNLq", - "outputId": "e4ff9048-cb0c-4a7a-d5ed-b6bc2fb84802", - "colab": { - "base_uri": "https://localhost:8080/" - } - }, - "execution_count": 28, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "['loading', 'measurement_3', 'measurement_4', 'measurement_5', 'measurement_6', 'measurement_7', 'measurement_8', 'measurement_9', 'measurement_10', 'measurement_11', 'measurement_12', 'measurement_13', 'measurement_14', 'measurement_15', 'measurement_16', 'measurement_17']\n" - ] - } - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": { - "id": "fz5WDA4YJXXI", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 423 - }, - "outputId": "3e21aa99-eb61-4dad-dd4c-590d3461617e" - }, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAGWCAYAAABlx3VsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdfbgkZX3n//fHIWhWjVGZEAKMQyKuiyaLesSYRxIfgpqArqhIHmBjdmIiG43RhDwsQVx3wafErKw6IQT1FwNI4maiGEJU1jUryKAIAiIjjgEWYfABNUbIwPf3R9WBouk+p8+cc7qrz3m/rquv01V9V/W3uu+6z7fvuqsqVYUkSZKkxgOmHYAkSZLUJybIkiRJUocJsiRJktRhgixJkiR1mCBLkiRJHSbIkiRJUocJsrQMSU5OUu3j7iRfTXJpktcl+d6Bspvbcj875rr3btd/6BLi2ZnkjZ3ps5JsH3+LFlz3M5O8Ysj8FXuPSUpyUpKb2u/trBFl1tQ2D5Pkt5McPmR+JTlhCiGtuiQ/muSTSb6dZEWvdZrksCQnr+Q6JU2eCbK0fLcDTwV+BDgG+GvgF4ErkzypU+7mttzHxlzv3sAfAmMnyMDzgD9ZQvmleCZwv2QReC1w/Cq956pIMge8Bngr8KM02zDMqG1eS34bOHzI/KcC751sKBPzDuBrwM/QbOdKOoxmv5U0w/aadgDSGrC7qi7uTF+Q5G3AR4Gzkzy2qu6qqjuAi4evYnmSfGdV/UtVfWo11r+Qqvr8pN9zBTy2/Xt6VX19qpH01ECdXmseC2ytqv897UAWM79vTzsOab2xB1laBVX1NZqeuUcDz4DhQyySHJnksiT/3A7PuCTJT7Yvf6P9++edYRybO+v5+STvSvI14G/b9d1niEXnfZ6b5LPtIeWPJTmk89rQoR/dYQTtIePfAh7VieWswXKdZQ9N8qEk32q36y+S7DvkPV+Y5B1Jbk9yY5LXJHlAp9wBSc5NcmuSf0ny+SSjenvnl9nQDk35pyR3JLkqybHd7QLe3U7e3sZx+JD1jNzmTplnJLmi/f4+luRxA68/IMmJSXa0sXwuyXELxd/Zht9ty9/RfjaD731Ckuva13ck+c3B+JPcluQJSS5uv4tPJfnxTpmdwCOBP+xs4+Hta/cZYpHkoiTnJTm2fb+vJ/lgkgM6ZQ5vl3v8QCwXJTlvYN4Lk1zZxn9DmmFJe3VePznJbUM+m8G4FtqHBpc9PM2Qig3AWwa/0yS/0taXO5J8MclvDyz/1CTbktzcvt/lSX6+8/rxwP/oxFlJLmqnh+0nw9qESvLKJH+cZBdwZTv/QUle335WdyT5dJJnD6xv7M9C0sLsQZZWz0XAbuCHgb8bfDHJDwDnAW8BXg08CHgS8Ii2yE8DHwb+K/CBdt7NwH7t8zfSDOd4AXDXAnE8Cngz8F+Af6EZWnBBkoOr6ttjbssZwMFtTM9r5+0aVjDJRpptvwY4FngIcCpwYZK5qrqzU/z1wF8BRwNPA04CrgLObV9/F/CdwBaaQ+Lfz729v6OcQvPj5DXApcDzgb9IUlX1lzTDKW4A/qDdnn8Brt6Dbd4EvAF4XbuONwLnJPnBqpof1/o/gOPamD5J82PpzCRfrqr3L7AN7wB+iebz+d80deL58y8m+U/tut8MXAD8FPCmJA+sqlM76/k3wDuBPwK+RHPo/6+TPKqqvtVu10do6uEZ7TLDPot5TwG+j+aHw3fS1N2twLMXWOZ+kjwTOIfm+3018EM038sjgZcuYT2L7UODPkkzpOLjwJvaZXe163o18N9oPvOL2vW8Nsm3quqt7fKPAv4ReDvwbZrhOX+e5O62bn2gXe9vce/QjT05QvFqmiNQv8i9HVnnce/wjc8DLwS2tfvU5XvwWUhaSFX58OFjDx/AycBtC7x+M/C29vlmoICfbaePBr68wLIPacsfPzB/fj3vG7LMTuCNnemz2rI/0pn3KJrE/aXD4hpYdntn+o3AziHvOVjuVJpk9rs6857SvseLB97zXQPruhw4uzP9TeDnlvB9PAL4Z+APB+afD1zbmT6+ff+HLLK+hbZ5N3BwZ95z23U+tp1+NHA3cNzAsu8CLl3gPR/bruc3Rrz+AOAm4M8H5v9PmvHwD+rUzQJ+ulPm0HbeEZ15twEnD3mfAk7oTF/Urv/hnXmvaMt9Zzt9eDv9+IF1XQSc15m+GPjIQJnfpvmhd8BC+1Y3LhbZhxb4jAe37bvaujZYb06h+WGxYcg6QtPJ9A7gw535JwC12H4ysB/87EBsnxwo97R2/k8OzP8o8N7lfBY+fPgY/nCIhbS6ssBrVwIPS/LONFdLePAS1/2BxYsAcGtV/d/5iar6InAZTW/UajgM+PvqjO2tqktokvcfGyj79wPTVwMHdKYvB/57kuOTbBrjvR9P02s6eHLZOcBj2t7tlbKzqq7rTM/3vM7H/zSaBPl9SfaafwAfAg5NsmHEen+q/XvWiNcPoOnFHbaN3wX8YGfenTTJ6agYl+rSqvrqkPXtP+4K2u1+IsPjfwBLO2luufvQvKcCDwbeO/BdfRjYl/bzSvLwJH+S5IvAv7aPLcBj9vB9Rzl/YPrpNIn6Pw6pS3NtmZX6LCThGGRp1SR5EM0h41uGvV5V1wJH0QwbOB+4Lcl7lpDEDV3vELeOmLffkPkrYT+Gx3YL9z/c+7WB6TtpDg3PexGwnWaIwBfbMZ9PW+S9599r8L0Z8v7LMSx2uDf+fWjGut7OvcnUv9Ikvnsx+vN/JPDPNfrkwaVs4zeq6u75ibp3eEv3M16KxbZ5HPsA38EKfEcrsA91Y4JmeE/3u/pIO//A9u9ZNHXyDTRXOHkycCZ7/nmOMvjZ7AN870Bs/0rTy34grOhnIQnHIEur6ado9rGPjypQVR8APpDkYcBzgD+mGVt6zBjrH/f6rd8zYt5V7fP5cch7D5R5+JjrH3TziPfcl6bnemxVdRNwfJoT9w6jSQi2JdlUVV8e8d607999ff4Ewa8s5f2X6Ss0wzB+lKYnedCwHy7QxP3gJN81IknubmPXNLZx0EJ1af6Eu9tokrvF4v/24HqS3K9OLnMfmjf/nj/L8B9317Y/eH8WeFlVvb0T07gdTffbHkbvY4P79ldohtU8d6E3WKHPQhL2IEurIsl3A6cBO4B/WKx8Vd1eVe8B3gfMX2Fiub19874nyY90YttEc4j7E+2sW2kSln/XKfMQmus6dw327o5yCfAzSR7aWd+TacZbjnsN6PuoqruruezYa2iGUDxqRNHPAN+iOXGx64XA56pq6ImFCxh3m4f5ME0P8sOqavuQx50LLAfNSXrD3Aj8P4Zv49dpr3qwBMvZxkE3tn+7delAOidWVtVdND+UhsV/N/f+oLwReGiS7vCNZ4564xH70Lg+TnOi5feN+K6+ATyQ5n/mHZ1teyhw5MC67mxfG/xMbwQ2D8wfuT0DPkTTg/zNYfENFl7mZyEJe5CllbBXkh9unz+U5szxX6NJ5I5oE4L7SfKrNGMf/44m4TmYJml4FzSHw5N8AXhhks/Q9EBdsQfx3Qb8f0n+gHuvYnEr7RjXqro7yd8Av9mOrfwazVn4g9de/Sywb3spq8/QnEC1c8j7vbnd/guSnMa9V7G4kuaKFWNpe8EuoPk8PkeToPwWzVjMa4YtU1VfSfLHwB8k2U0zPOM/0Fxl4cXjvnfHuNs8LJZrk7yd5lrYr29jeRDwOOAxVfUrCyy3leaqFN9DcyLWdwNHV9Ux7fd1MvCOJF8GLgR+kuYz/70a/8ok3W18TpK/ozlR7do2IVyyqrqxvZTZa5N8iyah/D3u36v9hzT148+Bs2nGTb8W+NOqmk+y/46mDp6Z5E3AQQxc4WKxfWgJcX+t/UzfkuRRNJ/5A2jGFv9UVT2vqm5PcilwUpKv0yTzJ9IMofmuzuo+2/59eZIPA19vhz/8L5qT/s5Ic2m5JwC/PGaIF9LsCxe2+9RV7XseSnNS5u+u1GchqTXtswR9+JjlB/deKaBo/mF+jSYReh3wvQNlN3Pfq1g8leZEu/9Hk/x+gabX+YGdZZ5JkxR/u1128+B6Bt5jJ/e/isV8kvg5mt6vf+T+VxnYF/gbmh7IL9KceHQW9706xYOAP6dJrgs4q/seA+t7Ak1P6Lfaz+Q9wL6jPovBeNvnDwT+FLi2Xc9twPuBH1zkO9lA8yPgBprevKuBnx8oczzjXcViKdt8v22iOUnzFTQJzR00lxT738AvjbENvwdc327DjcCZA2X+M80Rijvbcr85pG4ueBWIdvpJNFeV+Of2tcNHlLuIzpUo2nmHM3DVCpqrd1zUrm9+XOywZV9E86NpfvteB+w1UOZZ7Wf3LeD/0PRMd69iseg+NOLzvc+2deb/Ak3v9r8AX6U5GvLKgW37ULtt/0Rz5Y37fM7td/76Nqa7gYsG6t3n2+15P81RmmFXsRgW2wNp6vX8d/4lmmT4Ocv5LHz48DH8kapxhzFKkiRJa59jkCVJkqQOE2RJkiSpwwRZkiRJ6jBBliRJkjpMkCVJkqQOE2RJkiSpwwRZkiRJ6jBBliRJkjpMkCVJkqQOE2RJkiSpwwRZkiRJ6jBBliRJkjpMkCVJkqQOE2RJkiSpwwRZkiRJ6jBBliRJkjpMkCVJkqQOE2RJkiSpwwRZkiRJ6jBBliRJkjpMkCVJkqQOE2RJkiSpwwRZkiRJ6jBBliRJkjpMkCVJkqQOE2RJkiSpwwRZkiRJ6jBBliRJkjpMkCVJkqQOE2RJkiSpwwRZkiRJ6jBBliRJkjpMkCVJkqQOE2RJkiSpwwRZkiRJ6jBBliRJkjpMkCVJkqQOE2RJkiSpwwRZkiRJ6jBBliRJkjr2mnYAK2GfffapzZs3TzsM9chll112W1VtnHYcC7HeahjrrmaR9VazalTdXRMJ8ubNm9m+ffu0w1CPJPnitGNYjPVWw1h3NYtWut4mOQJ4C7ABOKOqTh1R7vnAecCTq2rBSmm91TCj6q5DLCRJUm8k2QCcDjwLOAR4cZJDhpR7KPBy4JLJRqj1wARZktawJEckuTbJjiQnLlDu+Ukqydwk45OGOAzYUVXXV9WdwNnAUUPKvRY4Dfj2JIPT+mCCLElrlD1xmlH7Azd0pm9s590jyROBA6vqA5MMTOuHCbIkrV32xGnNSfIA4M3Ab41RdkuS7Um279q1a/WD05phgiyNwcPUmlEr1hNnoqEJugk4sDN9QDtv3kOBxwMXJdkJ/DCwbVi7W1Vbq2ququY2buz1RTbUM2viKhbTtPnE5n/KzlOfM+VItFo6h6mfQZNgXJpkW1VdPVDOw9Rjmt9vwH1nmjo9cccvVraqtgJbAebm5mp1I+uHbj2dZ32diEuBg5McRJMYHwMcO/9iVd0O7DM/neQi4FWLXcVCS7Pe8xt7kKXFeZhas2rFeuKkSamq3cAJwAXANcC5VXVVklOSHDnd6LRe2IMsLW7YYeqndAt0D1MnefWoFSXZAmwB2LRp0yqEKt2HPXGaSVV1PnD+wLyTRpQ9fBIxaX0xQZaWycPUK8NhFyuvqnYnme+J2wCcOd8TB2yvqm3TjVBSH6z34RTDmCCvEP+5r2lLOUwN8L00h6mPtCduccPGeWrl2BM3Huuh5H7Q5RhkaXH3HKZOsjfNYep7et6q6vaq2qeqNlfVZuBiwORYkqQZZQ+ytAgPU0ua56ForRX2Fi/MBFkag4epJ8skRJJWh4nxeBxiIUmSJHWYIEuSJEkdDrHYAx6ekCRJWrtMkFeB4yel4fxxKUmaBQ6xkCRJkjpMkCVJkqSOsRLkJEckuTbJjiQnDnn9gUnOaV+/JMnmdv4jk3wkyTeTvHVgmSclubJd5k/S3oIsySOSXJjkuvbvw5e/mZIkSdJ4Fk2Qk2wATgeeBRwCvDjJIQPFXgJ8taoeDfwRcFo7/9vAfwFeNWTVbwP+E3Bw+ziinX8i8KGqOhj4UDstSZIkTcQ4J+kdBuyoqusBkpwNHAVc3SlzFHBy+/w84K1JUlX/DHwsyaO7K0yyH/BdVXVxO/0u4LnAB9t1Hd4WfSdwEfA7S90wSZJWS/eEU0/IVt95gvTSjZMg7w/c0Jm+EXjKqDLtbXlvBx4J3LbAOm8cWOf+7fN9q+rm9vmXgH2HrSDJFmALwKZNm8bYjMmzAZWWx31IkjQNvb7MW1VVkhrx2lZgK8Dc3NzQMpIkjWKvmrS49dpRMU6CfBNwYGf6gHbesDI3JtkLeBjw5UXWecCIdd6SZL+qurkdinHrGDFOhI2pJEnS2jdOgnwpcHCSg2iS2GOAYwfKbAOOAz4OHA18uKpG9uq2ye/Xk/wwcAnwS8D/GFjXqe3fvxl/cyT1zUr9sPQGPJKkSVk0QW7HFJ8AXABsAM6sqquSnAJsr6ptwJ8B706yA/gKTRINQJKdwHcBeyd5LvDMqroa+HXgLOA7aU7O+2C7yKnAuUleAnwReOFKbKgkSZI0jrHGIFfV+cD5A/NO6jz/NvCCEctuHjF/O/D4IfO/DDxtnLgkSZKklead9CRJWobNJ37Ac1SkNcYEWZIkSeowQZ4QexgkSZJmQ6+vgyxpdvmDUNKeSnIE8BaaiwOcUVWnDrz+UuBlwF3AN4Et7QUApBVhD7IkrWFJjkhybZIdSU4c8vpLk1yZ5PIkH0tyyDTilOYl2QCcDjwLOAR48ZB6+Z6q+sGqOhR4PfDmCYc5Ezx6vedMkCVpjTLR0Iw6DNhRVddX1Z3A2cBR3QJV9fXO5IMB76g7Aesp4TZBlqS1y0RDs2h/4IbO9I3tvPtI8rIkn6f5Yfcbw1aUZEuS7Um279q1a1WC1dpkgiyNwcPU/THfg7FeejGWyURDa1ZVnV5VPwD8DvAHI8psraq5qprbuHHjZAPUTDNBlhbhYWqtdSYa6pmbgAM70we080Y5G3juqkakdcerWEiLu+cwNUCS+cPU95wx7WFq9dSeJBpvW9WIesCjD713KXBwkoNo6usxwLHdAkkOrqrr2snnANchrSATZGlxww5TP2WwUJKXAa8E9gZ+etiKkmwBtgBs2rRpxQOVBphoaOZU1e4kJwAX0Fzm7cyquirJKcD2qtoGnJDk6cC/Al8FjptexFqLTJClFVJVpwOnJzmW5jD1/RrsqtoKbAWYm5uzl1mrykRDs6qqzgfOH5h3Uuf5yycelNYVE2RpcR6m1swy0ZCkpfMkPWlx9xymTrI3zWHqbd0CSQ7uTHqYWpKkGWYP8iI8mUMeppYkaX0xQZ6wbsK989TnTDESLYWHqSUtxvZdWjscYiFJkiR12IMsacU4JEmStBaM1YM8xm12H5jknPb1S5Js7rz2u+38a5P8TDvv37a35J1/fD3JK9rXTk5yU+e1Z6/MpkqS1itvUS5pKRbtQe7cZvcZNDdIuDTJtqq6ulPsJcBXq+rRSY4BTgNe1N6O9xjgccD3Af+Q5DFVdS1waGf9NwHv66zvj6rqjcvfPEmSJGlpxhlisehtdtvpk9vn5wFvTZJ2/tlVdQfwhSQ72vV9vLPs04DPV9UXl7MhkiRJ651HSVbGOEMsht1md/9RZapqN3A78Mgxlz0G+MuBeSckuSLJmUkePiyoJFuSbE+yfdeuXWNshiRJkrS4qV7For3pwpHAezuz3wb8AM0QjJuBNw1btqq2VtVcVc1t3Lhx1WOV1D+OKZWkyVsPY/rHSZDHuc3uPWWS7AU8DPjyGMs+C/hkVd0yP6Oqbqmqu6rqbuBPaYZkSJIkSRMxToK86G122+n5O4cdDXy4qqqdf0x7lYuDgIOBT3SWezEDwyuS7NeZfB7wmXE3RpIkSVquRU/SG/M2u38GvLs9Ce8rNEk0bblzaU7o2w28rKruAkjyYJorY/zqwFu+PsmhQAE7h7wuSZIkrZqxbhQyxm12vw28YMSyrwNeN2T+P9OcyDc4/xfHiUmSpMWs5TGSklaPt5qWJEmSOrzVtKRls5dOuq/5fWLnqc+ZciSS9oQ9yJIkSVKHPciSZl63B9seO0nSctmDPEVr/SLbkiRJs8gEWZIkSeowQZYkSZI6HIM8gkMfJEmS1id7kCVJUq8kOSLJtUl2JDlxyOuvTHJ1kiuSfCjJo6YRp9bu+VQmyJK0hploaNYk2QCcDjwLOAR4cZJDBop9Cpirqh8CzgNeP9ko+2etJqrTYoIsjcEkQ7PIREMz6jBgR1VdX1V3AmcDR3ULVNVHqupb7eTFwAETjlFrnGOQpUV0koxnADcClybZVlVXd4rNJxnfSvJrNEnGiyYf7WT1sbfCO5jdxz2JBkCS+UTjnrpbVR/plL8Y+IWJRrhK+lg3Nbb9gRs60zcCT1mg/EuADw57IckWYAvApk2bVio+rQMmyNLi1m2SoZlnojFl3sRmdSX5BWAO+Mlhr1fVVmArwNzcXE0wNM04h1hIixuWZOy/QPmRSYbUV51E4w3DXq+qrVU1V1VzGzdunGxwWm9uAg7sTB/QzruPJE8Hfh84sqrumFBsWifsQe4BexjWjsV6M+yF04QtNdH4SRMN9cClwMFJDqKpr8cAx3YLJHkC8A7giKq6dfIhaq2zB1la3Ir1ZtgLpwm7J9FIsjdNorGtW6CTaBxpoqE+qKrdwAnABcA1wLlVdVWSU5Ic2RZ7A/AQ4L1JLk+ybcTqpD1iD7K0OHszNJOqaneS+URjA3DmfKIBbK+qbdw30QD4p6o6cuRKpQmoqvOB8wfmndR5/vSJB6V1xQRZWoRJhmaZiYYkLd1YCXKSI4C30CQHZ1TVqQOvPxB4F/Ak4MvAi6pqZ/va79KctHQX8BtVdUE7fyfwjXb+7qqaa+c/AjgH2AzsBF5YVV9dxjZKy2aSIUnS+rHoGOQxLzT/EuCrVfVo4I+A09plD6E5HP044Ajgf7brm/dTVXXofHLcOhH4UFUdDHyonZYkSZImYpyT9Ba9o007/c72+XnA09IcZz4KOLuq7qiqLwA72vUtpLuudwLPHSNGSZIkaUWMkyCPcw3Ye8q0Z5/eDjxykWUL+Pskl7WXvpq3b1Xd3D7/ErDvsKCSbEmyPcn2Xbt2jbEZkiRJ0uKmeZLej1XVTUm+B7gwyWer6qPdAlVVSYbe+ca740iSpPXMW6qvnnES5HGuATtf5sYkewEPozlZb+SyVTX/99Yk76MZevFR4JYk+1XVzUn2A7xkltQjNsiSpEHz/xvWyg3PxkmQF70GLM2F548DPg4cDXy47f3dBrwnyZuB7wMOBj6R5MHAA6rqG+3zZwKnDKzr1Pbv3yxnA2fNWqtgkjQp/niTtFIWTZDHvAbsnwHvTrID+ApNEk1b7lzgamA38LKquivJvsD72uvF7gW8p6r+rn3LU4Fzk7wE+CLwwhXcXknrhLdwlyTtqbHGII9xDdhvAy8YsezrgNcNzLse+Pcjyn8ZeNo4cUmSJEkrbZyrWEiSpGXafOIHHAYizQgTZEmSJKnDBFmSJEnqmOZ1kCXNEA8NS5LWC3uQJa15jv2UJC2FPciSJEkzxB/8q88EucMKJ0mSJIdYSJIkSR0myD3lmElJkqTpcIiFJGmm2Zkg9Ud3f9x56nOmGMnymCBLGsnEQ5K0HpkgS5I0QWulh01ayxyDLEmSJHWYIEvSGpbkiCTXJtmR5MQhr/9Ekk8m2Z3k6GnEKA2y3mraTJB7bv5qFo4FnS4b67Vhve1LSTYApwPPAg4BXpzkkIFi/wQcD7xnstFJw1lv1QcmyNIibKw1ww4DdlTV9VV1J3A2cFS3QFXtrKorgLunEaA0hPVWU2eCLC3Oxlqzan/ghs70je28JUuyJcn2JNt37dq1IsFJI1hvNXUmyNLibKy17lXV1qqaq6q5jRs3TjscaSzWW+2psRLkMcZfPjDJOe3rlyTZ3Hntd9v51yb5mXbegUk+kuTqJFcleXmn/MlJbkpyeft49vI3U+oHG2tN2E3AgZ3pA9p5Up9Zb9eIWT7vY9HrIHfGXz6Dpufs0iTbqurqTrGXAF+tqkcnOQY4DXhRO07zGOBxwPcB/5DkMcBu4Leq6pNJHgpcluTCzjr/qKreuFIbKS2TjbVm1aXAwUkOoqmzxwDHTjckdc0nD14P+T6st0PMaqI5q8bpQV50/GU7/c72+XnA05KknX92Vd1RVV8AdgCHVdXNVfVJgKr6BnANe3jIej2Z5V9iM+6exjrJ3jSN9bYpxyQtqqp2AycAF9C0s+dW1VVJTklyJECSJye5EXgB8I4kV00vYsl6q34Y5056w8ZfPmVUmaraneR24JHt/IsHlr1PItwOx3gCcEln9glJfgnYTtPT/NXBoJJsAbYAbNq0aYzNkPZMW6fnG+sNwJnzjTWwvaq2JXky8D7g4cDPJXlNVT1uimFLAFTV+cD5A/NO6jy/lOaoiNQb1ltN21RvNZ3kIcBfAa+oqq+3s98GvBao9u+bgF8eXLaqtgJbAebm5moiAWvdsrFeW7zV7+zzaJqk1TROgjzO+Mv5Mjcm2Qt4GPDlhZZN8h00yfFfVNVfzxeoqlvmnyf5U+D9426MpJVh8iFJWs/GGYM8zvjLbcBx7fOjgQ9XVbXzj2mvcnEQcDDwiXZ88p8B11TVm7srSrJfZ/J5wGeWulGSJEnSnlq0B3mc8Zc0ye67k+wAvkKTRNOWOxe4mubKFS+rqruS/Bjwi8CVSS5v3+r32sPYr09yKM0Qi53Ar67g9g5lb5kkSZLmjTUGeYzxl9+mOZN02LKvA143MO9jQEaU/8VxYpIkSZJWw1RP0tOe8QQjrQaPpEjTY7su9YsJsiRpZvhDTuuNdX46TJAlrWveyUySVtcsHiEZ5yoW6jHvridJkrSyTJAlSZKkDhNkSZIkqcMxyJKkXnMYmbR2zMp5HybIa8QsDoBXP5h8SP0yKwmEtJat2wTZpECSJPWROcr0rdsEWZK6PAojSZpngiytQ/ZOSJI0mgnyGuT4NWl53IfUB9bD9cfOi/4wQZYk9ZLJgrR29X1YmwnyGtb3yqfJM+FYGvchSVqfvFHIOuEtqSVJksZjD7K0xvnDSLPE+np/HslY+9Z7ve/jeHsT5HXGhlaSJGlh6y5BXu+/0rr6+ItN6qthbYf7zsqxbR6P7fbaYZ3vt7ES5CRHAG8BNgBnVNWpA68/EHgX8Kqqnp8AACAASURBVCTgy8CLqmpn+9rvAi8B7gJ+o6ouWGidSQ4CzgYeCVwG/GJV3bm8zdRC7FVe3HL2gUmywdWgPtdd6+ueW+vtdp/rrVZPn+r1oglykg3A6cAzgBuBS5Nsq6qrO8VeAny1qh6d5BjgNOBFSQ4BjgEeB3wf8A9JHtMuM2qdpwF/VFVnJ3l7u+63rcTGanEL9ZL1qeJO0nL2gclHq0nqe2+edXd96Hs9XKq1Xm/9YTieadfrcXqQDwN2VNX1AEnOBo4CuhX1KODk9vl5wFuTpJ1/dlXdAXwhyY52fQxbZ5JrgJ8Gjm3LvLNd77ISZCvj8gz7/Mb5TNdKY80y9oGqqpUOxvrcP4t9J1PcF6ZSd4f9mLberr4e18Ol6lWbuxzW++Wb1vC2cRLk/YEbOtM3Ak8ZVaaqdie5nWaIxP7AxQPL7t8+H7bORwJfq6rdQ8rfR5ItwJZ28ptJrh1jW1bSPsBtE37PYfoSBwzEktOmGsejVnB9y9kH7vPdTLDe9qleDNP3+GAFY1zivrCm6u4qtwN9q0e9jmeVv4s1VW97om/1aRqGfgYrXJeH1t2ZPUmvqrYCW6f1/km2V9XctN6/b3FAf2Jp49g87TiGmVS97ct3MUrf44PZiHGSpt3mDtO378h4+qeP9XZcfn/T/QzGuVHITcCBnekD2nlDyyTZC3gYzaD5UcuOmv9l4LvbdYx6L2nSlrMPSNNk3dUsst5q6sZJkC8FDk5yUJK9aU662zZQZhtwXPv8aODD7TigbcAxSR7YXp3iYOATo9bZLvORdh206/ybPd88aUUsZx+Qpsm6q1lkvdXULTrEoh3bcwJwAc3lVs6sqquSnAJsr6ptwJ8B725PwvsKTWWmLXcuzcD63cDLquougGHrbN/yd4Czk/xX4FPtuvuoL4ds+hIH9CeWFY1jOfvAFPXluxil7/HBbMS4oBmtu0vRt+/IeFbAOqi345rJ72+FTW8orT+4JEmSpHuNM8RCkiRJWjdMkCVJkqQOE+QRkpyZ5NYkn+nMe0SSC5Nc1/59eDs/Sf4kyY4kVyR54grGcWCSjyS5OslVSV4+jViSPCjJJ5J8uo3jNe38g5Jc0r7fOe0JFbQnZp7Tzr8kyeaViKMTz4Ykn0ry/mnGMWkj6uXJSW5Kcnn7ePaIZY9Icm37WZw4wfjO6cS2M8nlI5bdmeTKttz2VYpvSfvTkOWPa8tcl+S4YWW0fEtpf4csu+Lf0Yh43pDks207+74k3z1i2RWv131vB7R0y/lO14rlts8rrqp8DHkAPwE8EfhMZ97rgRPb5ycCp7XPnw18EAjww8AlKxjHfsAT2+cPBT4HHDLpWNr1PaR9/h3AJe36zwWOaee/Hfi19vmvA29vnx8DnLPC388rgfcA72+npxJHT+rlycCrFlluA/B54PuBvYFPA4dMIr6B198EnDTitZ3APqv8+S1pfxpY9hHA9e3fh7fPHz7tOrEWH0tpfyfxHY2I55nAXu3z04bF07624vW67+2Aj8l9p2vpsZz2eTUe9iCPUFUfpTkztusomttf0/59bmf+u6pxMc21nPdboThurqpPts+/AVxDcwehicbSru+b7eR3tI+iuTX4eSPimI/vPOBpSbLcOACSHAA8Bzijnc404piGEfVyHPfcurWq7gTmb926ohaKr/3cXwj85Uq/77j2YH/q+hngwqr6SlV9FbgQOGL1o15/ltj+dq3KdzQsnqr6+7r3rq8X01yrdyL63g5o6Zbxna4Zy2yfV5wJ8tLsW1U3t8+/BOzbPh92W8yht8hejnZ4wBNoem8nHks7rOFy4FaafzyfZ/Stwe9zG1Bg/jagK+GPgd8G7m6nF7pF+WrG0ScntId6zxxx+GkidXQRPw7cUlXXjXi9gL9Pclma28OuqjH3p64+fIbrWZ+/o1+mOXI3zCTr9Sy0A1qaxb7TNWkP2ucVZ4K8h6rp65/YNfKSPAT4K+AVVfX1acRSVXdV1aE0PSWHAY9d7fcclORngVur6rJJv3ePvQ34AeBQ4GaaYQx99GIW7j3+sap6IvAs4GVJfmK1AunD/qQ916fvKMnv01zn/y9GFJlUvZ6VdkDjW5ffaV/aZxPkpbllfrhC+/fWdv44t8XcY0m+g6ay/EVV/fU0YwGoqq/R3PHwqYy+Nfhq3Qb0R4Ejk+ykOTz408BbphBHb1TVLe2Pl7uBP6X58TJo1evFQtrP/j8A54wqU1U3tX9vBd7H8O1YiViWsj91TfUzVP++oyTHAz8L/Hz7j/t+JlWvZ6Ed0NKM+Z2uKcton1ecCfLSdG9t2b0N9jbgl9L4YeD2zuGAZWnHbf4ZcE1VvXlasSTZOH+WdpLvBJ5BMz5o1K3BV+U2oFX1u1V1QFVtpjnp7sNV9fOTjqNPBsaYPw/4zJBi49y6dTU9HfhsVd047MUkD07y0PnnNCdADduOZdmD/anrAuCZSR7eHup8ZjtPk9Gr7yjJETRDvY6sqm+NKDORet2ufxbaAS3BmN/pmrHM9nnlTeJMwFl80BwKvhn4V5pxWi+hGbv6IeA64B+AR7RlA5xOMyb3SmBuBeP4MZrDCVcAl7ePZ086FuCHaG79fQXNTnpSO//7gU8AO4D3Ag9s5z+ond7Rvv79q/AdHc69V7GYWhw9qJfvbr/rK2gakv3ast8HnN9Z9tk0ZwV/Hvj9ScXXzj8LeOlA2Xvia7+/T7ePq1YxvqXuT3PAGZ3lf7mtSzuA/zjt+rBWH0tsf1f9OxoRzw6a8bzz9Wj+ajmrXq/73g74WN3vdK0+lto+r/bDW01LkiRJHQ6xkCRJkjpMkCVJkqQOE2RJkiSpwwRZkiRJ6jBBliRJkjpMkHsiyTdXaD0nJ3lV+/yUJE9fifVKkiStFybIa1hVnVRV/zDtOKS+SHJ4kh9ZpMxLk1yZ5PIkH0tyyKTik4YZp952yj4/SSWZW+24pIWM2d4en2RX295enuRXJhXfYkyQe6a9A94bknym/Sf9onb+Q5J8KMkn2/lHdZb5/SSfS/Ix4N925p+V5Oj2+c4kr+ks/9h2/sYkFya5KskZSb6YZJ8Jb7bWoc6twSfpcGCxROM9VfWDVXUo8HrgzYuU1zrS43pLe9e+lwOXrHZAmi19rrfAOVV1aPs4Y5VjGpsJcv/8B+BQ4N/T3J73De3tJr8NPK+qngj8FPCmNpl+Es3tQg+luePMkxdY923t8m8DXtXO+0Oa2y8/DjgP2LQK26QeSLI5yWfbH06fS/IXSZ6e5B+TXJfksPbWuGcm+USST83/EGuX/T/tD6xPzvcKJNkvyUfbX/6fSfLj7fxvdt736CRntc/PSvL2JJcAr0/yA0n+Lsll7fof2yn3tiQXJ7m+7Yk4M8k18+tqyz0zycfbmN6b5CHt/Pv9IEyyGXgp8JttvD8+7HOqqq93Jh9Mc2cnTYn1NpsZo962XgucRvP/QlNkvc1mxq+3/TTtWwv6uOcWi99s//4R8Mud+e8GjgS+A3gr996C8V+A7wVeAZzSKf9m4FXt87OAo9vnO4H92+dPAf6hfX45cFBn+a8A+0z78/CxKnVsM7Ab+EGaH8eXAWfS3J78KOB/Af8N+IW2/HfT3JL2wcC/AR7Uzj8Y2N4+/y3a29UCG4CHts+/2Xnfo4Gz2udnAe8HNrTTHwIObp8/hebH2ny5szuxfX0g7kOBfYCPAg9ul/kd7r0F+k7gP7fPf532VsTAyfP7xyKf1ctobsV7w3x8Pqy3fa63wBOBv2qfXwTMTfu7W88P6+3Y9fZ4mltsX0HTSXfgtL+7+cc0uty1Z34e2Ag8qar+NclO4EFLXMcd7d+7wO9+nfpCVV0JkOQq4ENVVUmupGnQDwCOTHuiJ00d2wT8P+CtSQ6lqT+PaV+/FDgzyXcA/6uqLh8jhvdW1V1t78OPAO9NMv/aAzvl/rYT2y0Dcc/Hegjwj+3yewMf7yz/1+3fy2iOzIytqk4HTk9yLPAHwHFLWV4rznq7gCQPoOkcOX6c8poY6+3i/hb4y6q6I8mvAu8EfnoJy68ak6T++T/AryZ5J/AI4CeAVwMvAm5tk+OfAh7Vlv8ocFaS/07zff4c8I4lvN8/Ai8ETkvyTODhK7MZ6qk7Os/v7kzfTVN/7gKeX1XXdhdKcjJwC83QnwfQHsKtqo8m+QngOTT18M1V9S7uOyxh8IfcP7d/HwB8rZqxvgvF2o1zMNYLq+rFiyy/nB+EZ9MMSdJ0WW8X9lDg8cBFbfLyvcC2JEdW1fYx16GVZ71dRFV9uTN5Bs15H73gGOT+eR/NoYZPAx8GfruqvgT8BTDX/rr7JeCzAFX1SeCctvwHaX5hLsVrgGcm+QzwAuBLwDdWYDs0my4A/nPa/7JJntDOfxhwc1XdDfwizeE9kjyKprfhT2katye25W9J8u/anq3nDXujasb6fiHJC9p1Jcm/X0KsFwM/muTR7fIPTvKYRZb5Bk0yMVKSgzuTzwGuW0JMmo51XW+r6vaq2qeqNlfV5vY9TI77b13X23Y9+3UmjwSuWUJMq8oEuSeq6iHt36qqV1fV46s5k/6cdv5tVfXUdt5/rKp/V1U729deV1WPqaofq6pjq+qN7fzjq+q89vnmqrqtfb69qg5v3/p24Geq6vE046Nuqarur0etL6+lGe9+RXto7bXt/P8JHJfk08BjubdX4nDg00k+RXOU4y3t/BNpxr79X5rxZaP8PPCSdr1X0Yx/G0tV7aI5pPyXSa6gOdz32EUW+1vgeYucNHJCmqu6XA68EodXzALrrWaR9RZ+o21vPw38Bj0aJpQqT9Bez9resnNpfizdCfx6VS21F1qSJGnNMEGWJEmSOjxJT9K6lOT3acbdd723ql43jXikcVhvNYtmsd7agyxJkiR1eJKeJEmS1GGCLEmSJHWYIEuSJEkdJsiSJElShwmyJEmS1GGCLEmSJHWYIEuSJEkdJsiSJElSx5q4k94+++xTmzdvnnYY6pHLLrvstqraOO04FmK91TDWXc0i661m1ai6uyYS5M2bN7N9+/Zph6EeSfLFacewGOuthlnpupvkCOAtwAbgjKo6dUS55wPnAU+uqgUrpnVXg2xzNatG1V2HWEjSGpVkA3A68CzgEODFSQ4ZUu6hwMuBSyYboST1kwmyJK1dhwE7qur6qroTOBs4aki51wKnAd+eZHCS1FcTT5CTHJHk2iQ7kpy4QLnnJ6kkc5OMTxrGeqsZtT9wQ2f6xnbePZI8ETiwqj6w0IqSbEmyPcn2Xbt2rXykktQjE02QPdynWWS91VqV5AHAm4HfWqxsVW2tqrmqmtu4sdfnYknSsk26B9nDfZpF1lvNqpuAAzvTB7Tz5j0UeDxwUZKdwA8D2zwCImm9m/RVLIYd7ntKt0D3cF+SV49aUZItwBaATZs2rUKoa8vmE5ujpztPfc6UI5lJ1tsVYj2cuEuBg5McRJMYHwMcO/9iVd0O7DM/neQi4FWLXcVivZivr13W3clYjauvrGfdumwdHk+vLvPWOdx3/GJlq2orsBVgbm6uVjey2TSscdfKs96qr6pqd5ITgAtoEo0zq+qqJKcA26tq23QjlO6vM6ztGTQdEpcm2VZVVw+Uc1ibVs2kE+SlHO4D+F6aw31H+stQU2S91cyqqvOB8wfmnTSi7OGTiKnP7FjohXuGtQEkmR/WdvVAuflhbSOP2kl7atIJsof7NIust6vIw9iSBjisTVM30QTZw32aRdZbae2z53h2OKxNkzDxMcge7lt9NvQrz3q7sqyjkhbgsLYVslBb64l7C/NOepIkqU/uGdaWZG+aYW33HKmrqturap+q2lxVm4GLAZNjrSgTZEmS1BtVtRuYH9Z2DXDu/LC2JEdONzqtF726zJskSZLD2jRtJshrhGM6tZZ4ZQv1lTe70awzXxiPQyzWsc0nfsAdRZIkaYAJsiRJktThEAtJq8qjFFqLvESW1hKHDt2fCfI6Y7IiSZK0MIdYSJIkSR32IEuS1iWPqEkaxR5kSZIkqcMEWZIkSepwiMWM8xChJElaCV6d5V4myJJmgpchkqTF2XG2MhxiIUmSJHWYIEuSJEkdJsiSJElShwmyJEnLsPnEDzjuU1pjPElPnrUqSZLUYYIsSZI04zyKsbJMkCWtChvrfkhyBPAWYANwRlWdOvD6S4GXAXcB3wS2VNXVEw9UUq+s90trOgZZktaoJBuA04FnAYcAL05yyECx91TVD1bVocDrgTdPOExJ6p2JJ8hJjkhybZIdSU4c8vpLk1yZ5PIkHxvSmEsTZ73tj/kTouyhHsthwI6qur6q7gTOBo7qFqiqr3cmHwzUBOOTpF6aaIJsb4ZmkfVWM2x/4IbO9I3tvPtI8rIkn6epu78xbEVJtiTZnmT7rl27ViVYSeqLSfcg25uhWWS91ZpWVadX1Q8AvwP8wYgyW6tqrqrmNm7cONkAV5hHICQtZtIJ8or1ZkgTZC+cZtVNwIGd6QPaeaOcDTx3VSOSxuCwNk1bL69iUVWnA6cnOZamN+O4wTJJtgBbADZt2jTZAKfMno9+GqfeVtVWYCvA3Nzcmutltm72zqXAwUkOokmMjwGO7RZIcnBVXddOPge4DmmKOsPankHTIXFpkm0DV1d5T1W9vS1/JM2wtiMmHqzWrEknyHvSm/G2YS+s9URDvbJi9VaapKraneQE4AKay7ydWVVXJTkF2F5V24ATkjwd+Ffgqwz5YSdN2D3D2gCSzA9ruydBdlhbw06J1TPpBNneDM0i661mVlWdD5w/MO+kzvOXTzwoaWHDhrU9ZbBQkpcBrwT2Bn562IrW89FmLc9ExyBX1W5gvjfjGuDc+d6M9hAJNL0ZVyW5nKbi25uhqbLeSlL/rLeTSzVZEx+DbG+GZpH1VpImxmFtmrpenqQnSdJKcqzmTHFYm6bOBFmSJPWGJ5eqD0yQdR/zvSw7T33OlCORJK1XDmvTtJkgS5K0ArrDOOxkkGabCbIkSZKGWq8//CZ9q2lJkiSp1+xBniGehS1Js8HzOaTZZoIsadn88SZJWkscYiFJkiR1mCBLmlmbT/yAvdeSpBXnEAtJM2+9nmUtaX2yY2D12YMsSZIkdZggS5IkSR0myJIkSVKHCbIkSZLUYYIsSZIkdZggS5IkaVHr6dKaJsiSJElSh9dB1lBeV1aSJK1X9iBLkiRJHfYgS9pj62UsmiRpfTFB7jkTEEnLkeQI4C3ABuCMqjp14PVXAr8C7AZ2Ab9cVV+ceKCrxDZU0p6Y+BCLJEckuTbJjiQnDnn9lUmuTnJFkg8ledSkY5QGWW81i5JsAE4HngUcArw4ySEDxT4FzFXVDwHnAa+fbJSS1D8T7UHuNNbPAG4ELk2yraqu7hSbb6y/leTXaBrrF00yTqnLeqsZdhiwo6quB0hyNnAUcE/draqPdMpfDPzCRCOUNBaPhkzWpHuQ72msq+pOYL6xvkdVfaSqvtVOXgwcMOEYpUHWW82q/YEbOtM3tvNGeQnwwWEvJNmSZHuS7bt27VrBEKX786hdv81fD3ktJ+2TTpBXrLGWJsgkQ2tekl8A5oA3DHu9qrZW1VxVzW3cuHGywWldcWiQ+qC3l3lbrLE20VAfmWSoZ24CDuxMH9DOu48kTwd+Hziyqu6YUGzSKB6109RN+ioWS22sf3JUY11VW4GtAHNzc7XyoUr3WLF6K03YpcDBSQ6iqbPHAMd2CyR5AvAO4IiqunXyIa6Ovhz69aZLe2TYUbunLFB+waN2wBaATZs2rVR8Wgcm3YN8T2OdZG+axnpbt0CnsT5yLTXWmmnW2xmy1sfFLUVV7QZOAC4ArgHOraqrkpyS5Mi22BuAhwDvTXJ5km0jVif1jkfttFom2oNcVbuTzDfWG4Az5xtrYHtVbeO+jTXAP1XVkSNXKq0y661mWVWdD5w/MO+kzvOnTzwoaWEetdPUTfxGITbWmkXW23vZOytpla3boUHqD++kJ0mSesOjdvdlp8R0mCBrUfM7pyeYSJImwaN2mrbeXuZNkiRJmgZ7kHvKQyqSJEnTYQ+yJEmS1GGCLEmSJHWYIEuSJEkdJsiSJE2Ad3nUWrRW67Un6Ulak7oNtpcolCQthT3IkiRJUoc9yJIkST2yFocszBoTZEljscGWJK0XJsiSpDXBH3GSVopjkCVJkqQOE2RJkiSpwyEWPdPnQ4ReNkuSJK0H9iBLWvPW6oXsJUmrwx5kSZImyKNxUv/ZgyxJkiR12IMsaSSHJUiSxjH//2KtHBWxB1mSJEnqMEGWJEmSOkyQpTEkOSLJtUl2JDlxyOs/keSTSXYnOXoaMUrDrIe661VKJK20iSfI66Gx1tqSZANwOvAs4BDgxUkOGSj2T8DxwHsmG500mnVXs2q95gr+2OuPiSbINtZrxzrbiQ8DdlTV9VV1J3A2cFS3QFXtrKorgLunEaDGs87qLVh3NYPMFdQHk+5BtrHWLNofuKEzfWM7T+q7Fau7SbYk2Z5k+65du1YkOK3LH23jMFfQ1E36Mm/DGuun7MmKkmwBtgBs2rRp+ZFNkY3j+rGW6q3Wl6raCmwFmJubqymHo7VtxXIFTd5auRHOzJ6kV1Vbq2ququY2btw47XC0tt0EHNiZPqCdt2TWW03YitVdaRZ55EN7atI9yDbWmkWXAgcnOYimvh4DHDvdkFaXRzXWjHVXd7UmrGinBB750B6YdA/yPY11kr1pGuttE45BWpKq2g2cAFwAXAOcW1VXJTklyZEASZ6c5EbgBcA7klw1vYilhnVXM2rd5QqORe+fifYgV9XuJPON9QbgzPnGGtheVduSPBl4H/Bw4OeSvKaqHjfJOKVBVXU+cP7AvJM6zy+l6eWQesW6q1ljrqA+mPQQCxvrNWatDMaXNFvsbVvbzBU0bRNPkHUvG3hJkqT+MUGWtO545EOStJCZvcybJEmStBrsQZYEOORHmiaPamgtmq/Xs1in7UGWJEmSOuxBliRJmjCP2vWbCbK0zq33RnqWDwGuR+uhvlonpelziIUkSZLUYQ/yhK3l3g97PSRJ0lpggixJkqRVM4tXaTFBliT12lo+8qb1Z73X51k52uwYZEmSJKnDHmStuFn5dSh1zeIhQEnS6jBBliRJWkXrfVjFLDJBnhB3DvWJ9VHqP4/GSdNjgixJ6iV/yEmaFhNkrRrHdPaPCcd47LmTpPXNBFmSRvBHniStjr63rybIq8jeOkmS1i/zgNllgqyJ8JD19NhAS7Ot7z1t0nL1MUcwQZakMfSxAV9L/CEnqU9MkFeBDf1o9oRMjvVQWnv8odZ/tr17rk85wsQT5CRHAG8BNgBnVNWpA68/EHgX8CTgy8CLqmrnpOMclzvC+jAr9db6uPr61ICPY1bqrpZm1urhUs1KvbXNXT3T/jE40QQ5yQbgdOAZwI3ApUm2VdXVnWIvAb5aVY9OcgxwGvCiScapyZh25R9XX+utDfP09b0OW3fXl7WSNPe13mo6plWvJ92DfBiwo6quB0hyNnAU0K30RwEnt8/PA96aJFVVkwx0ng356htW+XvW0E+t3lr/ZsOw76kH9RZ61OZal1fPsM+2x3VyHL2pt2Dd7ZNJ1utJJ8j7Azd0pm8EnjKqTFXtTnI78Ejgtm6hJFuALe3kN5Nc2z7fZ7DslPQlDuhPLIvGkdPGmzeGR+3RUsNNot72UV/qzSi9jq+tt3sS46zV3T59D8Yy2j45bVXjmbV629W372peX+OCHsU2kCOsWJs7syfpVdVWYOvg/CTbq2puCiH1Mg7oTyx9iWOaRtXbPur799X3+GA2YhxX39tcMJaF9C2eSRmnze3rZ9PXuKC/sa1kXA9YiZUswU3AgZ3pA9p5Q8sk2Qt4GM0AfGlarLeaVdZdzSLrraZu0gnypcDBSQ5KsjdwDLBtoMw24Lj2+dHAh6c1/lhqWW81q6y7mkXWW03dRIdYtOOETgAuoLl0y5lVdVWSU4DtVbUN+DPg3Ul2AF+h2TGWoi+Hr/sSB/Qnlr7EsSQTqrd91Pfvq+/xwZRjXGdtLhjLQvoWz0hTaHP7+tn0NS7ob2wrFlf8wSVJkiTda9JDLCRJkqReM0GWJEmSOmYmQU5yZpJbk3ymM+8NST6b5Iok70vy3SOW3ZnkyiSXJ9m+CnGcnOSmdv2XJ3n2iGWPSHJtkh1JTlxOHAvEck4njp1JLh+x7Ep+Jgcm+UiSq5NcleTl7fxHJLkwyXXt34ePWP64tsx1SY4bVkYrZ0S96c131Zd9fQ9inEo7sFr6tI19aeva9fWmvVsgll7tL32Q5N926svlSb6e5BUDZQ5PcnunzEmrFEtv2+C+tr9TaY+qaiYewE8ATwQ+05n3TGCv9vlpwGkjlt0J7LOKcZwMvGqR5TYAnwe+H9gb+DRwyErHMvD6m4CTJvCZ7Ac8sX3+UOBzwCHA64ET2/knDvt+gEcA17d/H94+f/i069tafoyow735rvqyr+9BjFNpB9bDNvalrWvX15v2boFYerW/9O3R1tEvAY8amH848P4JvH9v2+C+tr/TaI9mpge5qj5Kc6Zqd97fV9XudvJimmslTjyOMd1z68yquhOYv3XmqsSSJMALgb9cznuMGcfNVfXJ9vk3gGto7nJ0FPDOttg7gecOWfxngAur6itV9VXgQuCI1Y55PRtRb3rzXfVlX19In9qB1dKnbexLW9fG0pv2blQsfdtfeuhpwOer6ovTePM+t8F9bX+n0R7NTII8hl8GPjjitQL+PsllaW47uRpOaA8/nDni0MiwW2fuv0qxAPw4cEtVXTfi9VX5TJJsBp4AXALsW1U3ty99Cdh3yCKT/lw03Cx9V9Pe1xfSt3ZgNfRtG6fS1kG/2ruBWLr6vL9MyzGM/kH11P+/vbuPsaMq4zj+/dFWG5dakUZdQ+hGLFmqpBUNxvKSRklTqikpL9oGCdWGhIiNEutbagyGqAlRjPGlJOBmhRTQVVyDqTZaMDWlILZ0t5R32ysZVgAAB5xJREFUgZhCs5CmpFajodvHP85ZGde9e+/dvS9z2d8nmezcuWfmPnfmmZMzM+fukTQk6beS3tPCmDqlDi5bPjWtPnpdNJAlbQaOA1srFDk/Is4BLgauk3Rhg0PYApwBLAUOkR73tds6Jr+j0vB9Iulk4JfA5yPiaPG9SM86/D8FO0CZj1UJzvXJlLEeaLQyfseW13VQrvquUiwlP1/aQmngkdXAwARv7yV1u1gC/AAYbGVsY8paB5cwn5paH3V8A1nSeuBjwJU5qf5PRLyQ/74E/Ip0y71hImIkIkYj4gRwa4Xt1zJ0ZkMoDbt5KfCzSmUavU8kzSFV0Fsj4p68eERSd36/G3hpglVbtl9sUqU/VmU41ydTtnqgGcr2HdtR1+XPLU19VyGW0p8vbXQxsDciRsa/ERFHI+JYnt8GzJG0oEVxlboOLmM+Nbs+6ugGsqSVwJeA1RHxzwpluiTNG5sndTZ/dKKy04iju/ByTYXt1zJ0ZqNcBDwREQcnerPR+yT3AfwJ8HhE3Fx4qzgU6NXArydYfTuwQtIp+fHIirzMWqvUx6os53qVGMtWDzRcCb9jS+u6vJ3S1HeVYumE86WNKj5xkPSOvE+RdC6pjXS4RXGVtg4uaz41vT6q5Zd8ZZhICX0IeJXUh2QD8Aypb8m+PN2Sy74T2Jbn30X61eIQcADY3IQ47gD2A8N5x3ePjyO/XkX6lfFfpxtHpVjy8n7g2nFlm7lPzic9DhouHItVwKnADuBp4A/AW3P5DwC3Fdb/dD6WzwCfaneuvd6nCjlcmmNVlnN9CjG2pR6YCd+xLHVd3mZp6rtJYinV+VKWCegiNXjnF5ZdO5ZDwGfzvhgi/RhtWZPiKG0dXCG2tudThbiaWh95qGkzMzMzs4KO7mJhZmZmZtZobiCbmZmZmRW4gWxmZmZmVuAGspmZmZlZgRvIZmZmZmYFbiCbmZmZmRW4gWx1k7Rc0rIayn1c0mOSDki6sxWxmVVSS95K+p6kfXl6StIrrYrPrJIac/d0SfdLekTSsKRVrYrPbCI15u1CSTtyzv5R0mmtiq+a2e0OwKZH0uyION7ij10OHAMeqFRA0iLgq8B5EXFE0ttaFJt1gLLmbURcPzYvaSPwvuaHZZ2krLkLfA34eURskbQY2Ab0ND806wQlztvvALdHxE8lfRj4NnBVC2KryneQ6ySpR9ITkvrzHaatki6StEvS05LOzUMu9kn6c76av6Sw7p8k7c3Tsry8W9LOfNfqUUkX5OXHCp97uaT+PN8v6RZJDwE3STpD0u8k7cnb7y2U2yLpQUnP5qu5PkmPj20rl1shaXeOaUDSyXn585K+kZfvl9QrqYc08tD1Od4LKuyqa4AfRcQR+O/Y7NYmzlv1UFveFlUcktZax7mrHmrL3QDenOfnAy826BDYFDhv1UNtebsYuC/P3w9c0qBDMH3tHvqx0ybSFflx4GzSBcYeoA8Q6cAOAt8CPpnLv4U0xGEX8CZgbl6+CPhLnv8CefhDYBYwL88fK3zu5UB/nu8HfgPMyq93AIvy/AeB+wrl7i7EdnRc3EuBBcBOoCuv82Xg63n+eWBjnv8MebhL4AZgU5X9NAjcBOwiDdm5st3HbiZPztva8rYQ90LSsKaz2n3sZvrk3K25zu0mDbt7EDgCvL/dx24mT87bmvP2TuBzef5S0oXeqe0+fhHhLhZT9FxE7AeQdADYEREhaT/ppDgNWC1pUy4/FziddEX/Q0lLgVHgzPz+w0CfpDnAYETsqyGGgYgYzVdwy4ABSWPvvbFQ7t5CbCPj4h6LdTGwK6//BmB3Yf178t89pOSt1WzSib08f8ZOSWdHhPt0to/ztnZrgV9ExOgU1rXGc+5Wt47UMPqupA8Bd0h6b0ScqGMb1ljO2+o25e+6ntQAf4H0ndvODeSp+Xdh/kTh9QnSPh0FLouIJ4srSboBGAGWkK7M/gUQETslXQh8FOiXdHNE3E66khozd1wM/8h/TwJeiYilVWItxjk+1t9HxLoq649SX74cBB6KiFeB5yQ9RWowP1zHNqyxnLe1WwtcN4X1rDmcu9VtAFYCRMRuSXNJd/3cva19nLdVRMSL5AZ1bsRfVpYbae6D3BzbgY3Kl1mSxn7oMx84lK/oryI9IkHSQtIV263AbcA5ufyIpLMknQSsmeiDIuIoqQF6Rd6WJC2pI9YHgfMkvTuv3yXpzCrr/B2YV6XMIOnuMZIWkK6An60jLms9523aVi9wCv97d8TKzbkLfwM+krd5Fqmh9HIdcVnrzfi8lbQgxw3ph/19dcTUVG4gN8eNwBxgOD+euDEv/zFwtaQhoJfXruyWA0OSHgE+AXw/L/8Kqf/QA6T+kJVcCWzI2z1AHZ3cI+JlYD1wl6RhUqOgt8pq9wJrNHnH++3AYUmPkTrefzEiDtcal7WF8zZZC9wduVOcdQTnbuqfek2O6S5gvXO49Jy36Ts9mZ8yvx34Zq0xNZt8/piZmZmZvcZ3kM3MzMzMCvwjPZsWSZuBK8YtHoiI0jwmMRvPeWudyrlrnagT89ZdLMzMzMzMCtzFwszMzMyswA1kMzMzM7MCN5DNzMzMzArcQDYzMzMzK/gPVNZP71xBVYAAAAAASUVORK5CYII=\n" - }, - "metadata": { - "needs_background": "light" - } - } - ], + "execution_count": null, + "metadata": { + "id": "fz5WDA4YJXXI" + }, + "outputs": [], "source": [ "# histogram - showing data density\n", "float_cols = [c for c in data.columns if data[c].dtype == float]\n", @@ -3053,29 +1558,11 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": null, "metadata": { - "id": "d4F8dkG_l7sw", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 281 - }, - "outputId": "b7c3d0f6-8d12-44d3-8c2b-ed2da56ab1ed" + "id": "d4F8dkG_l7sw" }, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEICAYAAAC9E5gJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAaEElEQVR4nO3df5TV9X3n8ecrGF0iMWJI7hIghWzGnEXZUpkV9rRNL0ujyO4Gs9u1cIxANE5SdU/SctqSds/i0bXHtCHukbiacWXFLRXdmsicBEsI6y2bbscA0QqYWEbEOBOECAYyamww7/3j+5n062R+XO5PZu7rcc49873v76/Pe9B5zffHna8iAjMza21va/YAzMys+RwGZmbmMDAzM4eBmZnhMDAzMxwGZmaGw8AMAEmPSVqZpldJ+laD9jvivvLjMquns5o9ALNak3QIKABv5soXRsQPhlsnIq6o97gqUe64JAXQFhE9dR6SjVM+MrDx6t9FxKTca9ggqCVJ/gXLxiSHgbUESZMlfU3SDyW9kqan5+aXJH1yiPVmSor8D/n8suk0z99IukPSMeBmSedI+oKk70s6IukeSRNHGd8X0riel3RFrp7f1wcl/bWkE5JelvRQqu9Mi/+dpH5Jv13N98pak8PAWsXbgP8J/BLwfuB14Es12vZ84CDZqanbgNuBC4G5wAeBacB/GWX9Z4EpwJ8C90nSEMvdCnwDmAxMB9YDRMSH0/xfTkdBD1XbkLUeh4GNV49K+lF6PRoRxyLikYh4LSJ+TPZD+zdqtK8fRMT6iDgF/AToAH43Io6nff0JsGyE9V+IiHsj4k1gIzCVLFgG+ylZmL0vIn4SEQ25yG2twWFg49WVEXF+el0p6R2SvizpBUkngZ3A+ZIm1GBfL+am3wO8A9gzEEbAX6X6cF4amIiI19LkpCGW+wNAwLcl7Zd0bXXDNvtHvthlrWI18CFgfkS8JGku8CTZD9eRvJq+vgM4mab/6aBl8n/692WyU1AXRURfdUMetJOIl4DrAST9GvBNSTt9B5HVgo8MrFW8k+yH9I8kXQCsLWeliPgh0Ad8XNKE9Nv4Pxth+Z8B9wJ3SHovgKRpki6vtgFJ/zF30fsVshD6WXp/BPhAtfuw1uUwsFbx34CJZL+5d5OduinX9cDvA8eAi4D/N8ryfwj0AN3plNQ3yY5KqvUvgSck9QNdwGci4mCadzOwMZ2auqoG+7IWIz/cxszMfGRgZmYOAzMzcxiYmRkOAzMzYwx/zmDKlCkxc+bMitZ99dVXOffcc2s7oDOce24N7nn8q7bfPXv2vBwRv/AhyDEbBjNnzmT37t0VrVsqlSgWi7Ud0BnOPbcG9zz+VduvpBeGqvs0kZmZOQzMzMxhYGZmOAzMzAyHgZmZ4TAwMzMcBmZmhsPAzMxwGJiZGWP4E8jV2Nt3glVrvt7w/R66/d80fJ9mZuXwkYGZmTkMzMzMYWBmZjgMzMwMh4GZmVFGGEiaIelxSc9I2i/pM6l+gaTtkg6kr5NTXZLulNQj6WlJl+S2tTItf0DSylx9nqS9aZ07JakezZqZ2dDKOTI4BayOiNnAAuBGSbOBNcCOiGgDdqT3AFcAbenVAdwNWXgAa4H5wKXA2oEASctcn1tvcfWtmZlZuUYNg4g4HBHfSdM/Br4LTAOWAhvTYhuBK9P0UuCByHQD50uaClwObI+I4xHxCrAdWJzmnRcR3RERwAO5bZmZWQOc1ofOJM0EfgV4AihExOE06yWgkKanAS/mVutNtZHqvUPUh9p/B9nRBoVCgVKpdDrD/7nCRFg951RF61aj0vHWQn9/f1P33wzuuTW0Ws/16rfsMJA0CXgE+GxEnMyf1o+IkBQ1H90gEdEJdAK0t7dHpc8BXb9pC+v2Nv7D14euLjZ8nwNa7Tmx4J5bRav1XK9+y7qbSNLbyYJgU0R8JZWPpFM8pK9HU70PmJFbfXqqjVSfPkTdzMwapJy7iQTcB3w3Ir6Ym9UFDNwRtBLYkquvSHcVLQBOpNNJ24DLJE1OF44vA7aleSclLUj7WpHblpmZNUA550p+FbgG2CvpqVT7I+B24GFJ1wEvAFeleVuBJUAP8BrwCYCIOC7pVmBXWu6WiDiepm8A7gcmAo+ll5mZNcioYRAR3wKGu+9/0RDLB3DjMNvaAGwYor4buHi0sZiZWX34E8hmZuYwMDMzh4GZmeEwMDMzHAZmZobDwMzMcBiYmRkOAzMzw2FgZmY4DMzMDIeBmZnhMDAzMxwGZmaGw8DMzHAYmJkZ5T3pbIOko5L25WoPSXoqvQ4NPPRG0kxJr+fm3ZNbZ56kvZJ6JN2ZnmqGpAskbZd0IH2dXI9GzcxseOUcGdwPLM4XIuK3I2JuRMwlezbyV3KznxuYFxGfztXvBq4H2tJrYJtrgB0R0QbsSO/NzKyBRg2DiNgJHB9qXvrt/irgwZG2IWkqcF5EdKcnoT0AXJlmLwU2pumNubqZmTVItdcMfh04EhEHcrVZkp6U9NeSfj3VpgG9uWV6Uw2gEBGH0/RLQKHKMZmZ2Wka9RnIo1jOW48KDgPvj4hjkuYBj0q6qNyNRURIiuHmS+oAOgAKhQKlUqmiQRcmwuo5pypatxqVjrcW+vv7m7r/ZnDPraHVeq5XvxWHgaSzgH8PzBuoRcQbwBtpeo+k54ALgT5gem716akGcETS1Ig4nE4nHR1unxHRCXQCtLe3R7FYrGjs6zdtYd3eanPw9B26utjwfQ4olUpU+v0aq9xza2i1nuvVbzWniX4T+F5E/Pz0j6T3SJqQpj9AdqH4YDoNdFLSgnSdYQWwJa3WBaxM0ytzdTMza5Bybi19EPhb4EOSeiVdl2Yt4xcvHH8YeDrdavqXwKcjYuDi8w3A/wB6gOeAx1L9duAjkg6QBcztVfRjZmYVGPVcSUQsH6a+aojaI2S3mg61/G7g4iHqx4BFo43DzMzqx59ANjMzh4GZmTkMzMwMh4GZmeEwMDMzHAZmZobDwMzMcBiYmRkOAzMzw2FgZmY4DMzMDIeBmZnhMDAzMxwGZmaGw8DMzHAYmJkZ5T3pbIOko5L25Wo3S+qT9FR6LcnN+5ykHknPSro8V1+caj2S1uTqsyQ9keoPSTq7lg2amdnoyjkyuB9YPET9joiYm15bASTNJnsc5kVpnf8uaUJ6LvJdwBXAbGB5Whbg82lbHwReAa4bvCMzM6uvUcMgInYCx0dbLlkKbI6INyLiebLnHV+aXj0RcTAi/gHYDCyVJOBfkz0vGWAjcOVp9mBmZlUa9RnII7hJ0gpgN7A6Il4BpgHduWV6Uw3gxUH1+cC7gR9FxKkhlv8FkjqADoBCoUCpVKpo4IWJsHrOqdEXrLFKx1sL/f39Td1/M7jn1tBqPder30rD4G7gViDS13XAtbUa1HAiohPoBGhvb49isVjRdtZv2sK6vdXkYGUOXV1s+D4HlEolKv1+jVXuuTW0Ws/16rein4gRcWRgWtK9wNfS2z5gRm7R6anGMPVjwPmSzkpHB/nlzcysQSq6tVTS1NzbjwEDdxp1AcsknSNpFtAGfBvYBbSlO4fOJrvI3BURATwO/FZafyWwpZIxmZlZ5UY9MpD0IFAEpkjqBdYCRUlzyU4THQI+BRAR+yU9DDwDnAJujIg303ZuArYBE4ANEbE/7eIPgc2S/ivwJHBfzbozM7OyjBoGEbF8iPKwP7Aj4jbgtiHqW4GtQ9QPkt1tZGZmTeJPIJuZmcPAzMwcBmZmhsPAzMxwGJiZGQ4DMzPDYWBmZjgMzMwMh4GZmeEwMDMzHAZmZobDwMzMcBiYmRkOAzMzw2FgZmY4DMzMjDLCQNIGSUcl7cvV/kzS9yQ9Lemrks5P9ZmSXpf0VHrdk1tnnqS9knok3SlJqX6BpO2SDqSvk+vRqJmZDa+cI4P7gcWDatuBiyPiXwB/D3wuN++5iJibXp/O1e8Grid7LnJbbptrgB0R0QbsSO/NzKyBRg2DiNgJHB9U+0ZEnEpvu4HpI21D0lTgvIjojogAHgCuTLOXAhvT9MZc3czMGmTUZyCX4Vrgodz7WZKeBE4C/zki/i8wDejNLdObagCFiDicpl8CCsPtSFIH0AFQKBQolUoVDbgwEVbPOTX6gjVW6Xhrob+/v6n7bwb33Bpared69VtVGEj6Y+AUsCmVDgPvj4hjkuYBj0q6qNztRURIihHmdwKdAO3t7VEsFisa9/pNW1i3txY5eHoOXV1s+D4HlEolKv1+jVXuuTW0Ws/16rfin4iSVgH/FliUTv0QEW8Ab6TpPZKeAy4E+njrqaTpqQZwRNLUiDicTicdrXRMZmZWmYpuLZW0GPgD4KMR8Vqu/h5JE9L0B8guFB9Mp4FOSlqQ7iJaAWxJq3UBK9P0ylzdzMwaZNQjA0kPAkVgiqReYC3Z3UPnANvTHaLd6c6hDwO3SPop8DPg0xExcPH5BrI7kyYCj6UXwO3Aw5KuA14ArqpJZ2ZmVrZRwyAilg9Rvm+YZR8BHhlm3m7g4iHqx4BFo43DzMzqx59ANjMzh4GZmTkMzMwMh4GZmeEwMDMzHAZmZobDwMzMcBiYmRkOAzMzw2FgZmY4DMzMDIeBmZnhMDAzMxwGZmaGw8DMzHAYmJkZZYaBpA2Sjkral6tdIGm7pAPp6+RUl6Q7JfVIelrSJbl1VqblD0hamavPk7Q3rXNnejSmmZk1SLlHBvcDiwfV1gA7IqIN2JHeA1xB9uzjNqADuBuy8CB7ZOZ84FJg7UCApGWuz603eF9mZlZHZYVBROwEjg8qLwU2pumNwJW5+gOR6QbOlzQVuBzYHhHHI+IVYDuwOM07LyK6IyKAB3LbMjOzBhj1GcgjKETE4TT9ElBI09OAF3PL9abaSPXeIeq/QFIH2dEGhUKBUqlU2cAnwuo5pypatxqVjrcW+vv7m7r/ZnDPraHVeq5Xv9WEwc9FREiKWmxrlP10Ap0A7e3tUSwWK9rO+k1bWLe3Jq2flkNXFxu+zwGlUolKv19jlXtuDa3Wc736reZuoiPpFA/p69FU7wNm5Jabnmoj1acPUTczswapJgy6gIE7glYCW3L1FemuogXAiXQ6aRtwmaTJ6cLxZcC2NO+kpAXpLqIVuW2ZmVkDlHWuRNKDQBGYIqmX7K6g24GHJV0HvABclRbfCiwBeoDXgE8ARMRxSbcCu9Jyt0TEwEXpG8juWJoIPJZeZmbWIGWFQUQsH2bWoiGWDeDGYbazAdgwRH03cHE5YzEzs9rzJ5DNzMxhYGZmDgMzM8NhYGZmOAzMzAyHgZmZ4TAwMzMcBmZmhsPAzMxwGJiZGQ4DMzPDYWBmZjgMzMwMh4GZmeEwMDMzqggDSR+S9FTudVLSZyXdLKkvV1+SW+dzknokPSvp8lx9car1SFpTbVNmZnZ6Kn4qfEQ8C8wFkDSB7LnFXyV7stkdEfGF/PKSZgPLgIuA9wHflHRhmn0X8BGgF9glqSsinql0bGZmdnoqDoNBFgHPRcQL2WOMh7QU2BwRbwDPS+oBLk3zeiLiIICkzWlZh4GZWYPU6prBMuDB3PubJD0taYOkyak2DXgxt0xvqg1XNzOzBlH2yOIqNiCdDfwAuCgijkgqAC8DAdwKTI2IayV9CeiOiD9P693HPz74fnFEfDLVrwHmR8RNQ+yrA+gAKBQK8zZv3lzRmI8eP8GR1ytatSpzpr2r8TtN+vv7mTRpUtP23wzuuTW0Ws/V9rtw4cI9EdE+uF6L00RXAN+JiCMAA18BJN0LfC297QNm5NabnmqMUH+LiOgEOgHa29ujWCxWNOD1m7awbm+tzpCV79DVxYbvc0CpVKLS79dY5Z5bQ6v1XK9+a3GaaDm5U0SSpubmfQzYl6a7gGWSzpE0C2gDvg3sAtokzUpHGcvSsmZm1iBV/Xos6Vyyu4A+lSv/qaS5ZKeJDg3Mi4j9kh4muzB8CrgxIt5M27kJ2AZMADZExP5qxmVmZqenqjCIiFeBdw+qXTPC8rcBtw1R3wpsrWYsZmZWOX8C2czMHAZmZuYwMDMzHAZmZobDwMzMcBiYmRkOAzMzw2FgZmY4DMzMDIeBmZnhMDAzMxwGZmaGw8DMzKjdM5DNzFrKzDVfb8p+7198bl226yMDMzNzGJiZWQ3CQNIhSXslPSVpd6pdIGm7pAPp6+RUl6Q7JfVIelrSJbntrEzLH5C0stpxmZlZ+Wp1ZLAwIuZGRHt6vwbYERFtwI70HuAKsmcftwEdwN2QhQewFpgPXAqsHQgQMzOrv3qdJloKbEzTG4Erc/UHItMNnC9pKnA5sD0ijkfEK8B2YHGdxmZmZoPU4m6iAL4hKYAvR0QnUIiIw2n+S0AhTU8DXsyt25tqw9XfQlIH2REFhUKBUqlU0YALE2H1nFMVrVuNSsdbC/39/U3dfzO459bQrJ6b8TME6tdvLcLg1yKiT9J7ge2SvpefGRGRgqJqKWg6Adrb26NYLFa0nfWbtrBub+Pvqj10dbHh+xxQKpWo9Ps1Vrnn1tCsnlc18dbSevRb9WmiiOhLX48CXyU7538knf4hfT2aFu8DZuRWn55qw9XNzKwBqgoDSedKeufANHAZsA/oAgbuCFoJbEnTXcCKdFfRAuBEOp20DbhM0uR04fiyVDMzswao9lxJAfiqpIFt/UVE/JWkXcDDkq4DXgCuSstvBZYAPcBrwCcAIuK4pFuBXWm5WyLieJVjMzOzMlUVBhFxEPjlIerHgEVD1AO4cZhtbQA2VDMeMzOrjD+BbGZmDgMzM3MYmJkZDgMzM8NhYGZmOAzMzAyHgZmZ4TAwMzMcBmZmhsPAzMxwGJiZGQ4DMzPDYWBmZjgMzMwMh4GZmeEwMDMzqggDSTMkPS7pGUn7JX0m1W+W1CfpqfRaklvnc5J6JD0r6fJcfXGq9UhaU11LZmZ2uqp50tkpYHVEfCc9B3mPpO1p3h0R8YX8wpJmA8uAi4D3Ad+UdGGafRfwEaAX2CWpKyKeqWJsZmZ2GioOg/Qg+8Np+seSvgtMG2GVpcDmiHgDeF5SD3BpmteTHqGJpM1pWYeBmVmDKHsscZUbkWYCO4GLgd8DVgEngd1kRw+vSPoS0B0Rf57WuQ94LG1icUR8MtWvAeZHxE1D7KcD6AAoFArzNm/eXNF4jx4/wZHXK1q1KnOmvavxO036+/uZNGlS0/bfDO65NTSr5719Jxq+T4BZ75pQVb8LFy7cExHtg+vVnCYCQNIk4BHgsxFxUtLdwK1ApK/rgGur3Q9ARHQCnQDt7e1RLBYr2s76TVtYt7fq1k/boauLDd/ngFKpRKXfr7HKPbeGZvW8as3XG75PgPsXn1uXfqv6iSjp7WRBsCkivgIQEUdy8+8Fvpbe9gEzcqtPTzVGqJuZWQNUczeRgPuA70bEF3P1qbnFPgbsS9NdwDJJ50iaBbQB3wZ2AW2SZkk6m+wic1el4zIzs9NXzZHBrwLXAHslPZVqfwQslzSX7DTRIeBTABGxX9LDZBeGTwE3RsSbAJJuArYBE4ANEbG/inGZmdlpquZuom8BGmLW1hHWuQ24bYj61pHWMzOz+vInkM3MzGFgZmYOAzMzw2FgZmY4DMzMDIeBmZnhMDAzMxwGZmaGw8DMzHAYmJkZDgMzM8NhYGZmOAzMzAyHgZmZ4TAwMzMcBmZmxhkUBpIWS3pWUo+kNc0ej5lZKzkjwkDSBOAu4ApgNtmjM2c3d1RmZq3jjAgD4FKgJyIORsQ/AJuBpU0ek5lZy6j4Gcg1Ng14Mfe+F5g/eCFJHUBHetsv6dkK9zcFeLnCdSumzzd6j2/RlJ6bzD23hpbqeeHnq+73l4YqnilhUJaI6AQ6q92OpN0R0V6DIY0Z7rk1uOfxr179nimnifqAGbn301PNzMwa4EwJg11Am6RZks4GlgFdTR6TmVnLOCNOE0XEKUk3AduACcCGiNhfx11WfappDHLPrcE9j3916VcRUY/tmpnZGHKmnCYyM7MmchiYmdn4DoPR/sSFpHMkPZTmPyFpZuNHWVtl9Px7kp6R9LSkHZKGvOd4LCn3T5lI+g+SQtKYvg2xnH4lXZX+nfdL+otGj7HWyvjv+v2SHpf0ZPpve0kzxllLkjZIOipp3zDzJenO9D15WtIlVe0wIsbli+xC9HPAB4Czgb8DZg9a5gbgnjS9DHio2eNuQM8LgXek6d9phZ7Tcu8EdgLdQHuzx13nf+M24Elgcnr/3maPuwE9dwK/k6ZnA4eaPe4a9P1h4BJg3zDzlwCPAQIWAE9Us7/xfGRQzp+4WApsTNN/CSySpAaOsdZG7TkiHo+I19LbbrLPdIxl5f4pk1uBzwM/aeTg6qCcfq8H7oqIVwAi4miDx1hr5fQcwHlp+l3ADxo4vrqIiJ3A8REWWQo8EJlu4HxJUyvd33gOg6H+xMW04ZaJiFPACeDdDRldfZTTc951ZL9ZjGWj9pwOn2dExNcbObA6Keff+ELgQkl/I6lb0uKGja4+yun5ZuDjknqBrcB/aszQmup0/38f0RnxOQNrPEkfB9qB32j2WOpJ0tuALwKrmjyURjqL7FRRkezIb6ekORHxo6aOqr6WA/dHxDpJ/wr4X5IujoifNXtgY8V4PjIo509c/HwZSWeRHV4ea8jo6qOsP+sh6TeBPwY+GhFvNGhs9TJaz+8ELgZKkg6RnVvtGsMXkcv5N+4FuiLipxHxPPD3ZOEwVpXT83XAwwAR8bfAPyH7A3bjWU3/jM94DoNy/sRFF7AyTf8W8H8iXZkZo0btWdKvAF8mC4Kxfi4ZRuk5Ik5ExJSImBkRM8muk3w0InY3Z7hVK+e/60fJjgqQNIXstNHBRg6yxsrp+fvAIgBJ/5wsDH7Y0FE2XhewIt1VtAA4ERGHK93YuD1NFMP8iQtJtwC7I6ILuI/scLKH7ELNsuaNuHpl9vxnwCTgf6dr5d+PiI82bdBVKrPncaPMfrcBl0l6BngT+P2IGLNHvGX2vBq4V9Lvkl1MXjXGf7FD0oNkoT4lXQtZC7wdICLuIbs2sgToAV4DPlHV/sb498vMzGpgPJ8mMjOzMjkMzMzMYWBmZg4DMzPDYWBmZjgMzMwMh4GZmQH/H8IlMt8mtIpkAAAAAElFTkSuQmCC\n" - }, - "metadata": { - "needs_background": "light" - } - } - ], + "outputs": [], "source": [ "# or you can use inbuilt methods and combine it with pyplot\n", "data.failure.hist()\n", @@ -3179,39 +1666,30 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": null, "metadata": { - "id": "JhbbBk93JXXV", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "6f68c126-c760-4207-e70d-efc14cc5c417" + "id": "JhbbBk93JXXV" }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Test accuracy: 0.744824990590892\n" - ] - } - ], + "outputs": [], "source": [ "from sklearn.neighbors import KNeighborsClassifier\n", "from sklearn.metrics import accuracy_score\n", "\n", "x = data[float_cols].copy()\n", - "x.fillna(x.mean(), inplace = True)\n", "y = data[\"failure\"]\n", + "\n", "model = KNeighborsClassifier(n_neighbors=5)\n", + "\n", "# split the data into train(90%) and test(10%)\n", - "train_ids = np.random.choice(range(len(data)), size = int(0.9 * len(data)), replace = False)\n", - "test_ids = np.array([x for x in range(len(data)) if x not in train_ids])\n", + "train_ids = ...\n", + "test_ids = ...\n", + "\n", "# fit the model\n", - "model.fit(x.iloc[train_ids], y.iloc[train_ids] )\n", + "model.fit(...,... )\n", + "\n", "# make the prediction\n", - "test_predictions = model.predict(x.iloc[test_ids])\n", - "print(\"Test accuracy:\", accuracy_score(y.iloc[test_ids], test_predictions))\n" + "test_predictions = model.predict(...)\n", + "print(\"Test accuracy:\", accuracy_score(..., test_predictions))\n" ] }, {