forked from HSE-LAMBDA/MLDM-2022
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
612b5dd
commit 4bdc736
Showing
1 changed file
with
319 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,319 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"<a href=\"https://colab.research.google.com/github/HSE-LAMBDA/MLDM-2022/blob/main/13-GANs/GAN_homework.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### WGAN\n", | ||
"\n", | ||
"* Modify snippets below and implement [Wasserstein GAN](https://arxiv.org/abs/1701.07875) ([From GAN to WGAN\n", | ||
"](https://lilianweng.github.io/posts/2017-08-20-gan/)) with weight clipping. (2 points)\n", | ||
"\n", | ||
"* Replace weight clipping with [gradient penalty](https://arxiv.org/pdf/1704.00028v3.pdf). (2 points)\n", | ||
"\n", | ||
"* Add labels into WGAN, performing [conditional generation](https://arxiv.org/pdf/1411.1784.pdf). (2 points) \n", | ||
"\n", | ||
"Write a report about experiments and results, add plots and visualizations." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import torch\n", | ||
"import torch.nn as nn\n", | ||
"import torch.nn.functional as F\n", | ||
"import torch.optim as optim\n", | ||
"from torch.utils.data import DataLoader, Dataset\n", | ||
"\n", | ||
"import torchvision\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"import numpy as np\n", | ||
"\n", | ||
"from torch.autograd import Variable" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Creating config object (argparse workaround)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"class Config:\n", | ||
" pass\n", | ||
"\n", | ||
"config = Config()\n", | ||
"config.mnist_path = None\n", | ||
"config.batch_size = 16\n", | ||
"config.num_workers = 3\n", | ||
"config.num_epochs = 10\n", | ||
"config.noise_size = 50\n", | ||
"config.print_freq = 100\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Create dataloder" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"train = torchvision.datasets.FashionMNIST(\"fashion_mnist\", train=True, transform=torchvision.transforms.ToTensor(), download=True)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"dataloader = DataLoader(train, batch_size=16, shuffle=True)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"len(dataloader)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"for image, cat in dataloader:\n", | ||
" break" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"scrolled": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"image.size()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Create generator and discriminator" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"class Generator(nn.Module):\n", | ||
" def __init__(self):\n", | ||
" super(Generator, self).__init__()\n", | ||
" self.model = nn.Sequential( \n", | ||
" nn.Linear(config.noise_size, 200),\n", | ||
" nn.ReLU(inplace=True),\n", | ||
" nn.Linear(200, 28*28),\n", | ||
" nn.Sigmoid())\n", | ||
" \n", | ||
" def forward(self, x):\n", | ||
" return self.model(x)\n", | ||
" \n", | ||
"class Discriminator(nn.Module):\n", | ||
" def __init__(self):\n", | ||
" super(Discriminator, self).__init__()\n", | ||
" self.model = nn.Sequential(\n", | ||
" nn.Linear(28*28, 200),\n", | ||
" nn.ReLU(inplace=True),\n", | ||
" nn.Linear(200, 50),\n", | ||
" nn.ReLU(inplace=True),\n", | ||
" nn.Linear(50, 1), \n", | ||
" nn.Sigmoid())\n", | ||
" def forward(self, x):\n", | ||
" return self.model(x)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"generator = Generator()\n", | ||
"discriminator = Discriminator()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Create optimizers and loss" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"optim_G = optim.Adam(params=generator.parameters(), lr=0.0001)\n", | ||
"optim_D = optim.Adam(params=discriminator.parameters(), lr=0.0001)\n", | ||
"\n", | ||
"criterion = nn.BCELoss()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Create necessary variables" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"input = Variable(torch.FloatTensor(config.batch_size, 28*28))\n", | ||
"noise = Variable(torch.FloatTensor(config.batch_size, config.noise_size))\n", | ||
"fixed_noise = Variable(torch.FloatTensor(config.batch_size, config.noise_size).normal_(0, 1))\n", | ||
"label = Variable(torch.FloatTensor(config.batch_size))\n", | ||
"real_label = 1\n", | ||
"fake_label = 0" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### GAN" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"scrolled": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"ERRD_x = np.zeros(config.num_epochs)\n", | ||
"ERRD_z = np.zeros(config.num_epochs)\n", | ||
"ERRG = np.zeros(config.num_epochs)\n", | ||
"N = len(dataloader)\n", | ||
"\n", | ||
"for epoch in range(config.num_epochs):\n", | ||
" for iteration, (images, cat) in enumerate(dataloader):\n", | ||
" ####### \n", | ||
" # Discriminator stage: maximize log(D(x)) + log(1 - D(G(z))) \n", | ||
" #######\n", | ||
" discriminator.zero_grad()\n", | ||
" \n", | ||
" # real\n", | ||
" label.data.fill_(real_label)\n", | ||
" input_data = images.view(images.shape[0], -1)\n", | ||
" output = discriminator(input_data)\n", | ||
" errD_x = criterion(output, label)\n", | ||
" ERRD_x[epoch] += errD_x.item()\n", | ||
" errD_x.backward()\n", | ||
" \n", | ||
" # fake \n", | ||
" noise.data.normal_(0, 1)\n", | ||
" fake = generator(noise)\n", | ||
" label.data.fill_(fake_label)\n", | ||
" output = discriminator(fake.detach())\n", | ||
" errD_z = criterion(output, label)\n", | ||
" ERRD_z[epoch] += errD_z.item()\n", | ||
" errD_z.backward()\n", | ||
" \n", | ||
" optim_D.step()\n", | ||
" \n", | ||
" ####### \n", | ||
" # Generator stage: maximize log(D(G(x))\n", | ||
" #######\n", | ||
" generator.zero_grad()\n", | ||
" label.data.fill_(real_label)\n", | ||
" output = discriminator(fake)\n", | ||
" errG = criterion(output, label)\n", | ||
" ERRG[epoch] += errG.item()\n", | ||
" errG.backward()\n", | ||
" \n", | ||
" optim_G.step()\n", | ||
" \n", | ||
" if (iteration+1) % config.print_freq == 0:\n", | ||
" print('Epoch:{} Iter: {} errD_x: {:.2f} errD_z: {:.2f} errG: {:.2f}'.format(epoch+1,\n", | ||
" iteration+1, \n", | ||
" errD_x.item(),\n", | ||
" errD_z.item(), \n", | ||
" errG.item()))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"noise.data.normal_(0, 1)\n", | ||
"fake = generator(noise)\n", | ||
"\n", | ||
"plt.figure(figsize=(6, 7))\n", | ||
"for i in range(16):\n", | ||
" plt.subplot(4, 4, i + 1)\n", | ||
" plt.imshow(fake[i].detach().numpy().reshape(28, 28), cmap=plt.cm.Greys_r)\n", | ||
" plt.axis('off')" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"anaconda-cloud": {}, | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.8.11" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 1 | ||
} |