|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "<a href=\"https://colab.research.google.com/github/HSE-LAMBDA/MLDM-2022/blob/main/13-GANs/GAN_homework.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "markdown", |
| 12 | + "metadata": {}, |
| 13 | + "source": [ |
| 14 | + "### WGAN\n", |
| 15 | + "\n", |
| 16 | + "* Modify snippets below and implement [Wasserstein GAN](https://arxiv.org/abs/1701.07875) ([From GAN to WGAN\n", |
| 17 | + "](https://lilianweng.github.io/posts/2017-08-20-gan/)) with weight clipping. (2 points)\n", |
| 18 | + "\n", |
| 19 | + "* Replace weight clipping with [gradient penalty](https://arxiv.org/pdf/1704.00028v3.pdf). (2 points)\n", |
| 20 | + "\n", |
| 21 | + "* Add labels into WGAN, performing [conditional generation](https://arxiv.org/pdf/1411.1784.pdf). (2 points) \n", |
| 22 | + "\n", |
| 23 | + "Write a report about experiments and results, add plots and visualizations." |
| 24 | + ] |
| 25 | + }, |
| 26 | + { |
| 27 | + "cell_type": "code", |
| 28 | + "execution_count": null, |
| 29 | + "metadata": {}, |
| 30 | + "outputs": [], |
| 31 | + "source": [ |
| 32 | + "import torch\n", |
| 33 | + "import torch.nn as nn\n", |
| 34 | + "import torch.nn.functional as F\n", |
| 35 | + "import torch.optim as optim\n", |
| 36 | + "from torch.utils.data import DataLoader, Dataset\n", |
| 37 | + "\n", |
| 38 | + "import torchvision\n", |
| 39 | + "import matplotlib.pyplot as plt\n", |
| 40 | + "import numpy as np\n", |
| 41 | + "\n", |
| 42 | + "from torch.autograd import Variable" |
| 43 | + ] |
| 44 | + }, |
| 45 | + { |
| 46 | + "cell_type": "markdown", |
| 47 | + "metadata": {}, |
| 48 | + "source": [ |
| 49 | + "### Creating config object (argparse workaround)" |
| 50 | + ] |
| 51 | + }, |
| 52 | + { |
| 53 | + "cell_type": "code", |
| 54 | + "execution_count": null, |
| 55 | + "metadata": {}, |
| 56 | + "outputs": [], |
| 57 | + "source": [ |
| 58 | + "class Config:\n", |
| 59 | + " pass\n", |
| 60 | + "\n", |
| 61 | + "config = Config()\n", |
| 62 | + "config.mnist_path = None\n", |
| 63 | + "config.batch_size = 16\n", |
| 64 | + "config.num_workers = 3\n", |
| 65 | + "config.num_epochs = 10\n", |
| 66 | + "config.noise_size = 50\n", |
| 67 | + "config.print_freq = 100\n" |
| 68 | + ] |
| 69 | + }, |
| 70 | + { |
| 71 | + "cell_type": "markdown", |
| 72 | + "metadata": {}, |
| 73 | + "source": [ |
| 74 | + "### Create dataloder" |
| 75 | + ] |
| 76 | + }, |
| 77 | + { |
| 78 | + "cell_type": "code", |
| 79 | + "execution_count": null, |
| 80 | + "metadata": {}, |
| 81 | + "outputs": [], |
| 82 | + "source": [ |
| 83 | + "train = torchvision.datasets.FashionMNIST(\"fashion_mnist\", train=True, transform=torchvision.transforms.ToTensor(), download=True)" |
| 84 | + ] |
| 85 | + }, |
| 86 | + { |
| 87 | + "cell_type": "code", |
| 88 | + "execution_count": null, |
| 89 | + "metadata": {}, |
| 90 | + "outputs": [], |
| 91 | + "source": [ |
| 92 | + "dataloader = DataLoader(train, batch_size=16, shuffle=True)" |
| 93 | + ] |
| 94 | + }, |
| 95 | + { |
| 96 | + "cell_type": "code", |
| 97 | + "execution_count": null, |
| 98 | + "metadata": {}, |
| 99 | + "outputs": [], |
| 100 | + "source": [ |
| 101 | + "len(dataloader)" |
| 102 | + ] |
| 103 | + }, |
| 104 | + { |
| 105 | + "cell_type": "code", |
| 106 | + "execution_count": null, |
| 107 | + "metadata": {}, |
| 108 | + "outputs": [], |
| 109 | + "source": [ |
| 110 | + "for image, cat in dataloader:\n", |
| 111 | + " break" |
| 112 | + ] |
| 113 | + }, |
| 114 | + { |
| 115 | + "cell_type": "code", |
| 116 | + "execution_count": null, |
| 117 | + "metadata": { |
| 118 | + "scrolled": true |
| 119 | + }, |
| 120 | + "outputs": [], |
| 121 | + "source": [ |
| 122 | + "image.size()" |
| 123 | + ] |
| 124 | + }, |
| 125 | + { |
| 126 | + "cell_type": "markdown", |
| 127 | + "metadata": {}, |
| 128 | + "source": [ |
| 129 | + "### Create generator and discriminator" |
| 130 | + ] |
| 131 | + }, |
| 132 | + { |
| 133 | + "cell_type": "code", |
| 134 | + "execution_count": null, |
| 135 | + "metadata": {}, |
| 136 | + "outputs": [], |
| 137 | + "source": [ |
| 138 | + "class Generator(nn.Module):\n", |
| 139 | + " def __init__(self):\n", |
| 140 | + " super(Generator, self).__init__()\n", |
| 141 | + " self.model = nn.Sequential( \n", |
| 142 | + " nn.Linear(config.noise_size, 200),\n", |
| 143 | + " nn.ReLU(inplace=True),\n", |
| 144 | + " nn.Linear(200, 28*28),\n", |
| 145 | + " nn.Sigmoid())\n", |
| 146 | + " \n", |
| 147 | + " def forward(self, x):\n", |
| 148 | + " return self.model(x)\n", |
| 149 | + " \n", |
| 150 | + "class Discriminator(nn.Module):\n", |
| 151 | + " def __init__(self):\n", |
| 152 | + " super(Discriminator, self).__init__()\n", |
| 153 | + " self.model = nn.Sequential(\n", |
| 154 | + " nn.Linear(28*28, 200),\n", |
| 155 | + " nn.ReLU(inplace=True),\n", |
| 156 | + " nn.Linear(200, 50),\n", |
| 157 | + " nn.ReLU(inplace=True),\n", |
| 158 | + " nn.Linear(50, 1), \n", |
| 159 | + " nn.Sigmoid())\n", |
| 160 | + " def forward(self, x):\n", |
| 161 | + " return self.model(x)" |
| 162 | + ] |
| 163 | + }, |
| 164 | + { |
| 165 | + "cell_type": "code", |
| 166 | + "execution_count": null, |
| 167 | + "metadata": {}, |
| 168 | + "outputs": [], |
| 169 | + "source": [ |
| 170 | + "generator = Generator()\n", |
| 171 | + "discriminator = Discriminator()" |
| 172 | + ] |
| 173 | + }, |
| 174 | + { |
| 175 | + "cell_type": "markdown", |
| 176 | + "metadata": {}, |
| 177 | + "source": [ |
| 178 | + "### Create optimizers and loss" |
| 179 | + ] |
| 180 | + }, |
| 181 | + { |
| 182 | + "cell_type": "code", |
| 183 | + "execution_count": null, |
| 184 | + "metadata": {}, |
| 185 | + "outputs": [], |
| 186 | + "source": [ |
| 187 | + "optim_G = optim.Adam(params=generator.parameters(), lr=0.0001)\n", |
| 188 | + "optim_D = optim.Adam(params=discriminator.parameters(), lr=0.0001)\n", |
| 189 | + "\n", |
| 190 | + "criterion = nn.BCELoss()" |
| 191 | + ] |
| 192 | + }, |
| 193 | + { |
| 194 | + "cell_type": "markdown", |
| 195 | + "metadata": {}, |
| 196 | + "source": [ |
| 197 | + "### Create necessary variables" |
| 198 | + ] |
| 199 | + }, |
| 200 | + { |
| 201 | + "cell_type": "code", |
| 202 | + "execution_count": null, |
| 203 | + "metadata": {}, |
| 204 | + "outputs": [], |
| 205 | + "source": [ |
| 206 | + "input = Variable(torch.FloatTensor(config.batch_size, 28*28))\n", |
| 207 | + "noise = Variable(torch.FloatTensor(config.batch_size, config.noise_size))\n", |
| 208 | + "fixed_noise = Variable(torch.FloatTensor(config.batch_size, config.noise_size).normal_(0, 1))\n", |
| 209 | + "label = Variable(torch.FloatTensor(config.batch_size))\n", |
| 210 | + "real_label = 1\n", |
| 211 | + "fake_label = 0" |
| 212 | + ] |
| 213 | + }, |
| 214 | + { |
| 215 | + "cell_type": "markdown", |
| 216 | + "metadata": {}, |
| 217 | + "source": [ |
| 218 | + "### GAN" |
| 219 | + ] |
| 220 | + }, |
| 221 | + { |
| 222 | + "cell_type": "code", |
| 223 | + "execution_count": null, |
| 224 | + "metadata": { |
| 225 | + "scrolled": true |
| 226 | + }, |
| 227 | + "outputs": [], |
| 228 | + "source": [ |
| 229 | + "ERRD_x = np.zeros(config.num_epochs)\n", |
| 230 | + "ERRD_z = np.zeros(config.num_epochs)\n", |
| 231 | + "ERRG = np.zeros(config.num_epochs)\n", |
| 232 | + "N = len(dataloader)\n", |
| 233 | + "\n", |
| 234 | + "for epoch in range(config.num_epochs):\n", |
| 235 | + " for iteration, (images, cat) in enumerate(dataloader):\n", |
| 236 | + " ####### \n", |
| 237 | + " # Discriminator stage: maximize log(D(x)) + log(1 - D(G(z))) \n", |
| 238 | + " #######\n", |
| 239 | + " discriminator.zero_grad()\n", |
| 240 | + " \n", |
| 241 | + " # real\n", |
| 242 | + " label.data.fill_(real_label)\n", |
| 243 | + " input_data = images.view(images.shape[0], -1)\n", |
| 244 | + " output = discriminator(input_data)\n", |
| 245 | + " errD_x = criterion(output, label)\n", |
| 246 | + " ERRD_x[epoch] += errD_x.item()\n", |
| 247 | + " errD_x.backward()\n", |
| 248 | + " \n", |
| 249 | + " # fake \n", |
| 250 | + " noise.data.normal_(0, 1)\n", |
| 251 | + " fake = generator(noise)\n", |
| 252 | + " label.data.fill_(fake_label)\n", |
| 253 | + " output = discriminator(fake.detach())\n", |
| 254 | + " errD_z = criterion(output, label)\n", |
| 255 | + " ERRD_z[epoch] += errD_z.item()\n", |
| 256 | + " errD_z.backward()\n", |
| 257 | + " \n", |
| 258 | + " optim_D.step()\n", |
| 259 | + " \n", |
| 260 | + " ####### \n", |
| 261 | + " # Generator stage: maximize log(D(G(x))\n", |
| 262 | + " #######\n", |
| 263 | + " generator.zero_grad()\n", |
| 264 | + " label.data.fill_(real_label)\n", |
| 265 | + " output = discriminator(fake)\n", |
| 266 | + " errG = criterion(output, label)\n", |
| 267 | + " ERRG[epoch] += errG.item()\n", |
| 268 | + " errG.backward()\n", |
| 269 | + " \n", |
| 270 | + " optim_G.step()\n", |
| 271 | + " \n", |
| 272 | + " if (iteration+1) % config.print_freq == 0:\n", |
| 273 | + " print('Epoch:{} Iter: {} errD_x: {:.2f} errD_z: {:.2f} errG: {:.2f}'.format(epoch+1,\n", |
| 274 | + " iteration+1, \n", |
| 275 | + " errD_x.item(),\n", |
| 276 | + " errD_z.item(), \n", |
| 277 | + " errG.item()))" |
| 278 | + ] |
| 279 | + }, |
| 280 | + { |
| 281 | + "cell_type": "code", |
| 282 | + "execution_count": null, |
| 283 | + "metadata": {}, |
| 284 | + "outputs": [], |
| 285 | + "source": [ |
| 286 | + "noise.data.normal_(0, 1)\n", |
| 287 | + "fake = generator(noise)\n", |
| 288 | + "\n", |
| 289 | + "plt.figure(figsize=(6, 7))\n", |
| 290 | + "for i in range(16):\n", |
| 291 | + " plt.subplot(4, 4, i + 1)\n", |
| 292 | + " plt.imshow(fake[i].detach().numpy().reshape(28, 28), cmap=plt.cm.Greys_r)\n", |
| 293 | + " plt.axis('off')" |
| 294 | + ] |
| 295 | + } |
| 296 | + ], |
| 297 | + "metadata": { |
| 298 | + "anaconda-cloud": {}, |
| 299 | + "kernelspec": { |
| 300 | + "display_name": "Python 3 (ipykernel)", |
| 301 | + "language": "python", |
| 302 | + "name": "python3" |
| 303 | + }, |
| 304 | + "language_info": { |
| 305 | + "codemirror_mode": { |
| 306 | + "name": "ipython", |
| 307 | + "version": 3 |
| 308 | + }, |
| 309 | + "file_extension": ".py", |
| 310 | + "mimetype": "text/x-python", |
| 311 | + "name": "python", |
| 312 | + "nbconvert_exporter": "python", |
| 313 | + "pygments_lexer": "ipython3", |
| 314 | + "version": "3.8.11" |
| 315 | + } |
| 316 | + }, |
| 317 | + "nbformat": 4, |
| 318 | + "nbformat_minor": 1 |
| 319 | +} |
0 commit comments