-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
57 lines (56 loc) · 30.5 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
<!doctype html>
<html lang="zh"><head><meta charset="utf-8"><meta name="generator" content="Hexo 4.2.0"><meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"><meta><title>Digital Shiyu</title><meta description="Trying to be everything about me"><meta property="og:type" content="blog"><meta property="og:title" content="Digital Shiyu"><meta property="og:url" content="http://yoursite.com/"><meta property="og:site_name" content="Digital Shiyu"><meta property="og:description" content="Trying to be everything about me"><meta property="og:locale" content="zh_CN"><meta property="og:image" content="http://yoursite.com/img/og_image.png"><meta property="article:author" content="shiyu AllRightsReserved"><meta property="article:tag" content="work"><meta property="article:tag" content=" life"><meta property="article:tag" content=" thoughts"><meta property="twitter:card" content="summary"><meta property="twitter:image" content="/img/og_image.png"><script type="application/ld+json">{"@context":"https://schema.org","@type":"BlogPosting","mainEntityOfPage":{"@type":"WebPage","@id":"http://yoursite.com"},"headline":"Digital Shiyu","image":["http://yoursite.com/img/og_image.png"],"author":{"@type":"Person","name":"shiyu AllRightsReserved"},"description":"Trying to be everything about me"}</script><link rel="icon" href="/img/digitalpre.png"><link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.12.0/css/all.css"><link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/highlight.js@9.12.0/styles/atom-one-light.css"><link rel="stylesheet" href="https://fonts.googleapis.com/css2?family=Ubuntu:wght@400;600&family=Source+Code+Pro"><link rel="stylesheet" href="/css/default.css"><!--!--><!--!--><script src="//busuanzi.ibruce.info/busuanzi/2.3/busuanzi.pure.mini.js" defer></script><!--!--><link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/lightgallery@1.6.8/dist/css/lightgallery.min.css"><link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/justifiedGallery@3.7.0/dist/css/justifiedGallery.min.css"><script src="https://www.googletagmanager.com/gtag/js?id=UA-165282104-1" async></script><script>window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-165282104-1');</script><!--!--><script src="https://cdn.jsdelivr.net/npm/pace-js@1.0.2/pace.min.js"></script></head><body class="is-2-column"><nav class="navbar navbar-main"><div class="container"><div class="navbar-brand justify-content-center"><a class="navbar-item navbar-logo" href="/"><img src="/img/Digital.png" alt="Digital Shiyu" height="28"></a></div><div class="navbar-menu"><div class="navbar-start"><a class="navbar-item is-active" href="/">主页</a><a class="navbar-item" href="/archives">存档</a><a class="navbar-item" href="/categories">分类</a><a class="navbar-item" href="/tags">标签</a><a class="navbar-item" href="/about">关于</a></div><div class="navbar-end"><a class="navbar-item search" title="搜索" href="javascript:;"><i class="fas fa-search"></i></a></div></div></div></nav><section class="section"><div class="container"><div class="columns"><div class="column order-2 column-main is-8-tablet is-8-desktop is-8-widescreen"><div class="card"><div class="card-image"><a class="image is-7by3" href="/2020/09/16/CPP/%E4%BD%BF%E7%94%A8%E5%AD%97%E7%AC%A6%E4%B8%B2/"><img class="thumbnail" src="/gallery/cpp.png" alt="使用字符串"></a></div><article class="card-content article" role="article"><div class="article-meta size-small is-uppercase level is-mobile"><div class="level-left"><time class="level-item" dateTime="2020-09-16T02:37:31.000Z" title="2020-09-16T02:37:31.000Z">2020-09-16</time><span class="level-item"><a class="link-muted" href="/categories/cpp/">cpp</a></span><span class="level-item">7 分钟 读完 (大约 1085 个字)</span></div></div><h1 class="title is-3 is-size-4-mobile"><a class="link-muted" href="/2020/09/16/CPP/%E4%BD%BF%E7%94%A8%E5%AD%97%E7%AC%A6%E4%B8%B2/">使用字符串</a></h1><div class="content"><p>这一节,利用字符串读取和输出的程序,了解字符串的相关操作,常量,和变量的声明以及初始化等概念。</p>
<p>学习要点:</p>
<ol>
<li>变量和对象的区分</li>
<li>链式输入和输出缓存区</li>
<li>字符类型的操作,运算符重载等</li>
</ol>
<p>hexo</div><a class="article-more button is-small size-small" href="/2020/09/16/CPP/%E4%BD%BF%E7%94%A8%E5%AD%97%E7%AC%A6%E4%B8%B2/#more">阅读更多</a></article></div><div class="card"><div class="card-image"><a class="image is-7by3" href="/2020/09/15/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0/BDL/"><img class="thumbnail" src="/gallery/BDL_TEASOR.png" alt="Bidirectional Learning for Domain Adaptation of Semantic Segmentation"></a></div><article class="card-content article" role="article"><div class="article-meta size-small is-uppercase level is-mobile"><div class="level-left"><time class="level-item" dateTime="2020-09-15T07:27:42.000Z" title="2020-09-15T07:27:42.000Z">2020-09-15</time><span class="level-item"><a class="link-muted" href="/categories/%E9%A2%86%E5%9F%9F%E8%87%AA%E9%80%82%E5%BA%94/">领域自适应</a></span><span class="level-item">6 分钟 读完 (大约 909 个字)</span></div></div><h1 class="title is-3 is-size-4-mobile"><a class="link-muted" href="/2020/09/15/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0/BDL/">Bidirectional Learning for Domain Adaptation of Semantic Segmentation</a></h1><div class="content"><h2 id="主要思想"><a href="#主要思想" class="headerlink" title="主要思想"></a>主要思想</h2><p>在图像变换和分割网络中融入perception loss 来减少不同特征对分割网络的影响,随后使用双向学习和自监督学习提升网络的泛化能力,并使得两阶段网络不断互相促进。<br>其中双向学习使得图像变换网络和分割网络不断迭代更新,相互促进优化,自监督学习使用分类器输出结果给目标域图片分配伪标签来约束分割网络</p>
<p><img src="/Pics/BDL_net.png" alt="网络结构"><br></div><a class="article-more button is-small size-small" href="/2020/09/15/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0/BDL/#more">阅读更多</a></article></div><div class="card"><div class="card-image"><a class="image is-7by3" href="/2020/09/15/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0/CAG_UDA/"><img class="thumbnail" src="/gallery/CAG_TEASOR.png" alt="CAG_UDA"></a></div><article class="card-content article" role="article"><div class="article-meta size-small is-uppercase level is-mobile"><div class="level-left"><time class="level-item" dateTime="2020-09-15T01:34:11.000Z" title="2020-09-15T01:34:11.000Z">2020-09-15</time><span class="level-item"><a class="link-muted" href="/categories/%E9%A2%86%E5%9F%9F%E8%87%AA%E9%80%82%E5%BA%94/">领域自适应</a></span><span class="level-item">10 分钟 读完 (大约 1565 个字)</span></div></div><h1 class="title is-3 is-size-4-mobile"><a class="link-muted" href="/2020/09/15/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0/CAG_UDA/">CAG_UDA</a></h1><div class="content"><h2 id="Category-Anchor-Guided-Unsupervised-Domain-Adaptation-for-Semantic-Segmentation"><a href="#Category-Anchor-Guided-Unsupervised-Domain-Adaptation-for-Semantic-Segmentation" class="headerlink" title="Category Anchor-Guided Unsupervised Domain Adaptation for Semantic Segmentation"></a>Category Anchor-Guided Unsupervised Domain Adaptation for Semantic Segmentation</h2><h3 id="中心思想:"><a href="#中心思想:" class="headerlink" title="中心思想:"></a>中心思想:</h3><p>核心思想为基于源域类别 Anchor 的分布对齐,实现两个域之间类内距离减小,类间距离增大的目的,更加利于生成分界面,同时使用对目标与分配伪标签的方式促使分界面不从数据中心穿过,也减少分类器对源域的偏爱。</p>
<ol>
<li>类别层次的特征对齐:基于源域和目标域相同类别的特征向量在特征空间中距离较近的假设,把源域的每个类别上计算类别的平均值当成是类别中心,并促使源域的同一类别特征向量和目标域的激活特征向量向类别中心靠拢。</li>
<li>提升模型泛化能力:基于源域 Anchor 给激活的目标域特征分配伪标签,分类器使用伪标签进行训练,促使分类边界也根据目标域的标签进行相应的调整。</div><a class="article-more button is-small size-small" href="/2020/09/15/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0/CAG_UDA/#more">阅读更多</a></article></div><div class="card"><div class="card-image"><a class="image is-7by3" href="/2020/09/12/CPP/%E5%BC%80%E5%A7%8B%E5%AD%A6%E4%B9%A0cpp/"><img class="thumbnail" src="/gallery/cpp.png" alt="开始学习C++"></a></div><article class="card-content article" role="article"><div class="article-meta size-small is-uppercase level is-mobile"><div class="level-left"><time class="level-item" dateTime="2020-09-12T08:15:01.000Z" title="2020-09-12T08:15:01.000Z">2020-09-12</time><span class="level-item"><a class="link-muted" href="/categories/cpp/">cpp</a></span><span class="level-item">5 分钟 读完 (大约 761 个字)</span></div></div><h1 class="title is-3 is-size-4-mobile"><a class="link-muted" href="/2020/09/12/CPP/%E5%BC%80%E5%A7%8B%E5%AD%A6%E4%B9%A0cpp/">开始学习C++</a></h1><div class="content"><p>本章开始,通过阅读《Accelerated C++》开始记录笔记并学习<br>学习要点:</p>
<ol>
<li>标准库和其代表的名字空间</li>
<li>表达式:被操作数和运算符组成了一个表达式,其中运算符有左结合/右结合的性质,被操作数则是由其类型决定表达式的结果</li>
<li>作用域:学习了两种作用域的生成方式,分别是花括号和名字空间</li>
</ol>
<figure class="highlight c++"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br><span class="line">8</span><br></pre></td><td class="code"><pre><span class="line"><span class="meta">#<span class="meta-keyword">include</span> <span class="meta-string"><iostream></span></span></span><br><span class="line"></span><br><span class="line"><span class="comment">//这是一个简单的cpp程序</span></span><br><span class="line"><span class="function"><span class="keyword">int</span> <span class="title">main</span><span class="params">()</span></span></span><br><span class="line"><span class="function"></span>{</span><br><span class="line"> <span class="built_in">std</span>::<span class="built_in">cout</span> << <span class="string">"Hello, World!"</span> <<<span class="built_in">std</span>::<span class="built_in">endl</span>;</span><br><span class="line"> <span class="keyword">return</span> <span class="number">0</span>;</span><br><span class="line">}</span><br></pre></td></tr></table></figure>
<p>在这个简单的程序中,我们将学习到表达式,作用域,运算符,作用数等一系列的概念</p>
<h2 id="1-注释:"><a href="#1-注释:" class="headerlink" title="1. 注释:"></a>1. 注释:</h2><p>可以使用 // 进行单行注释,也可以使用/<em>*/ 来进行多行注释(每次跨行需要行首加上 </em> ),当使用// 时,其优先级会高于多行注释</p>
<h2 id="2-include:"><a href="#2-include:" class="headerlink" title="2. include:"></a>2. include:</h2><p>使用 include 语句来包含不属于<strong>语言核心</strong>的<strong>标准库</strong>来增加对额外的指出<br></div><a class="article-more button is-small size-small" href="/2020/09/12/CPP/%E5%BC%80%E5%A7%8B%E5%AD%A6%E4%B9%A0cpp/#more">阅读更多</a></article></div><div class="card"><div class="card-image"><a class="image is-7by3" href="/2020/09/09/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0/%E6%B3%A8%E6%84%8F%E5%8A%9B%E6%9C%BA%E5%88%B6/"><img class="thumbnail" src="/gallery/senet.png" alt="注意力机制"></a></div><article class="card-content article" role="article"><div class="article-meta size-small is-uppercase level is-mobile"><div class="level-left"><time class="level-item" dateTime="2020-09-09T09:29:55.000Z" title="2020-09-09T09:29:55.000Z">2020-09-09</time><span class="level-item"><a class="link-muted" href="/categories/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0/">深度学习</a></span><span class="level-item">6 分钟 读完 (大约 877 个字)</span></div></div><h1 class="title is-3 is-size-4-mobile"><a class="link-muted" href="/2020/09/09/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0/%E6%B3%A8%E6%84%8F%E5%8A%9B%E6%9C%BA%E5%88%B6/">注意力机制</a></h1><div class="content"><h2 id="1-简介"><a href="#1-简介" class="headerlink" title="1. 简介"></a>1. 简介</h2><h2 id="2-SEnet-Squeeze-excitation-network"><a href="#2-SEnet-Squeeze-excitation-network" class="headerlink" title="2. SEnet (Squeeze-excitation network)"></a>2. SEnet (Squeeze-excitation network)</h2><h2 id="3-SKNET-CBAM-等"><a href="#3-SKNET-CBAM-等" class="headerlink" title="3. SKNET, CBAM 等"></a>3. SKNET, CBAM 等</h2><h2 id="1-简介-1"><a href="#1-简介-1" class="headerlink" title="1. 简介"></a>1. 简介</h2><p>定义:通过一定方式使得学习过程中仅仅关注部分信息的的手段都可以称作注意力机制,其可以让网络仅仅关注某些有用的信息,获取了关键信息就可以使用更加少的参数获得更加好的效果。</p></div><a class="article-more button is-small size-small" href="/2020/09/09/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0/%E6%B3%A8%E6%84%8F%E5%8A%9B%E6%9C%BA%E5%88%B6/#more">阅读更多</a></article></div><div class="card"><div class="card-image"><a class="image is-7by3" href="/2020/09/09/%E6%89%80%E8%A7%81%E6%89%80%E9%97%BB/post/"><img class="thumbnail" src="/gallery/test.png" alt="见闻"></a></div><article class="card-content article" role="article"><div class="article-meta size-small is-uppercase level is-mobile"><div class="level-left"><time class="level-item" dateTime="2020-09-09T08:33:24.000Z" title="2020-09-09T08:33:24.000Z">2020-09-09</time><span class="level-item"><a class="link-muted" href="/categories/%E8%A7%81%E9%97%BB/">见闻</a></span><span class="level-item">几秒 读完 (大约 0 个字)</span></div></div><h1 class="title is-3 is-size-4-mobile"><a class="link-muted" href="/2020/09/09/%E6%89%80%E8%A7%81%E6%89%80%E9%97%BB/post/">见闻</a></h1><div class="content"></div></article></div><div class="card"><div class="card-image"><a class="image is-7by3" href="/2020/09/09/%E6%97%A5%E6%9C%89%E6%89%80%E6%80%9D/post/"><img class="thumbnail" src="/gallery/test.png" alt="思考"></a></div><article class="card-content article" role="article"><div class="article-meta size-small is-uppercase level is-mobile"><div class="level-left"><time class="level-item" dateTime="2020-09-09T08:32:55.000Z" title="2020-09-09T08:32:55.000Z">2020-09-09</time><span class="level-item"><a class="link-muted" href="/categories/%E6%80%9D%E8%80%83/">思考</a></span><span class="level-item">几秒 读完 (大约 0 个字)</span></div></div><h1 class="title is-3 is-size-4-mobile"><a class="link-muted" href="/2020/09/09/%E6%97%A5%E6%9C%89%E6%89%80%E6%80%9D/post/">思考</a></h1><div class="content"></div></article></div><div class="card"><div class="card-image"><a class="image is-7by3" href="/2020/09/09/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0/%E7%BA%BF%E6%80%A7%E5%9B%9E%E5%BD%92/"><img class="thumbnail" src="/gallery/LinearR.png" alt="线性回归"></a></div><article class="card-content article" role="article"><div class="article-meta size-small is-uppercase level is-mobile"><div class="level-left"><time class="level-item" dateTime="2020-09-09T07:56:10.000Z" title="2020-09-09T07:56:10.000Z">2020-09-09</time><span class="level-item"><a class="link-muted" href="/categories/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0/">机器学习</a></span><span class="level-item">9 分钟 读完 (大约 1368 个字)</span></div></div><h1 class="title is-3 is-size-4-mobile"><a class="link-muted" href="/2020/09/09/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0/%E7%BA%BF%E6%80%A7%E5%9B%9E%E5%BD%92/">线性回归</a></h1><div class="content"><h1 id="线性回归(基于神经网络-梯度下降)"><a href="#线性回归(基于神经网络-梯度下降)" class="headerlink" title="线性回归(基于神经网络+梯度下降)"></a>线性回归(基于神经网络+梯度下降)</h1><p><strong>定义</strong>:基于特征和标签之间的线性函数关系约束,线性回归通过建立单层神经网络,将神经网络中每一个神经元当成是函数关系中的一个参数,通过利用初始输出和目标输出建立损失,并优化损失最小的方式使得神经元的数值和真实函数参数数值最相近,从而通过网络训练得到最符合数据分布的函数关系。</p>
<p><strong>实施步骤</strong>:</p>
<ol>
<li>初始通过随机化线性函数的参数,通过输入的x,会得到一系列y_h</li>
<li>输出的y_h和真实值y之间因为神经元参数不正确产生差距,为了y_h和y能尽量地逼近,我们通过平方误差损失函数(MSE Loss)来描述这种误差。</li>
<li>类似于通过求导得到损失函数最优解的方式,我们通过梯度下降法将这种误差传递到参数,通过调整参数使误差达到最小</li>
<li>通过几轮的训练,我们得到的最小的损失值对应的神经元数值,就是描述输入输出的线性关系的最好的参数。</li>
</ol></div><a class="article-more button is-small size-small" href="/2020/09/09/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0/%E7%BA%BF%E6%80%A7%E5%9B%9E%E5%BD%92/#more">阅读更多</a></article></div><div class="card"><div class="card-image"><a class="image is-7by3" href="/2020/05/06/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0/Adaptation/"><img class="thumbnail" src="/gallery/domain%20adaptation%20review.png" alt="领域自适应综述"></a></div><article class="card-content article" role="article"><div class="article-meta size-small is-uppercase level is-mobile"><div class="level-left"><time class="level-item" dateTime="2020-05-06T03:46:07.000Z" title="2020-05-06T03:46:07.000Z">2020-05-06</time><span class="level-item"><a class="link-muted" href="/categories/%E9%A2%86%E5%9F%9F%E8%87%AA%E9%80%82%E5%BA%94/">领域自适应</a></span><span class="level-item">11 分钟 读完 (大约 1700 个字)</span></div></div><h1 class="title is-3 is-size-4-mobile"><a class="link-muted" href="/2020/05/06/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0/Adaptation/">领域自适应综述</a></h1><div class="content"><h1 id="温故知新篇-—-领域自适应中的多种方法和内部含义浅析"><a href="#温故知新篇-—-领域自适应中的多种方法和内部含义浅析" class="headerlink" title="温故知新篇 — 领域自适应中的多种方法和内部含义浅析"></a>温故知新篇 — 领域自适应中的多种方法和内部含义浅析</h1><p>本文的行文结构如下,首先从定义出发描述,继而通过现有问题和数学模型开始理解什么是领域自适应问题。基于理解,我们罗列现有的几大主流领域自适应方法,并使用我们的数学模型辅助理解,提出笔者的一些思考。</p>
<h2 id="领域自适应定义:"><a href="#领域自适应定义:" class="headerlink" title="领域自适应定义:"></a><strong>领域自适应定义</strong>:</h2><p>现有深度学习模型使用源域的知识,并运用一系列领域自适应方法,提升其在目标域上的表现。基于研究领域自适应问题本质为研究泛化问题,其有众多的应用方向,包括但不限于分类,目标检测,语义分割等。<br></div><a class="article-more button is-small size-small" href="/2020/05/06/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0/Adaptation/#more">阅读更多</a></article></div></div><div class="column column-left is-4-tablet is-4-desktop is-4-widescreen order-1"><div class="card widget"><div class="card-content"><nav class="level"><div class="level-item has-text-centered flex-shrink-1"><div><figure class="image is-128x128 mx-auto mb-2"><img class="is-rounded" src="/img/avatar_new.jpg" alt="Daisy"></figure><p class="title is-size-4 is-block line-height-inherit">Daisy</p><p class="is-size-6 is-block">计算机视觉研究</p><p class="is-size-6 is-flex justify-content-center"><i class="fas fa-map-marker-alt mr-1"></i><span>地球, 银河系</span></p></div></div></nav><nav class="level is-mobile"><div class="level-item has-text-centered is-marginless"><div><p class="heading">文章</p><a href="/archives"><p class="title">9</p></a></div></div><div class="level-item has-text-centered is-marginless"><div><p class="heading">分类</p><a href="/categories"><p class="title">6</p></a></div></div><div class="level-item has-text-centered is-marginless"><div><p class="heading">标签</p><a href="/tags"><p class="title">6</p></a></div></div></nav><div class="level"><a class="level-item button is-primary is-rounded" href="https://github.com/shiyutang" target="_blank" rel="noopener">关注我</a></div><div class="level is-mobile"><a class="level-item button is-transparent is-marginless" target="_blank" rel="noopener" title="Email" href="/shiyu00daisy@gmail.com"><i class="fab fa-envelope-square"></i></a><a class="level-item button is-transparent is-marginless" target="_blank" rel="noopener" title="Notion" href="https://www.notion.so/shiyu00daisy/20b9186805954f9fb5c7560b73147c74"><i class="fab book"></i></a></div></div></div><!--!--><div class="card widget"><div class="card-content"><div class="menu"><h3 class="menu-label">分类</h3><ul class="menu-list"><li><a class="level is-mobile is-marginless" href="/categories/cpp/"><span class="level-start"><span class="level-item">cpp</span></span><span class="level-end"><span class="level-item tag">2</span></span></a></li><li><a class="level is-mobile is-marginless" href="/categories/%E6%80%9D%E8%80%83/"><span class="level-start"><span class="level-item">思考</span></span><span class="level-end"><span class="level-item tag">1</span></span></a></li><li><a class="level is-mobile is-marginless" href="/categories/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0/"><span class="level-start"><span class="level-item">机器学习</span></span><span class="level-end"><span class="level-item tag">1</span></span></a></li><li><a class="level is-mobile is-marginless" href="/categories/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0/"><span class="level-start"><span class="level-item">深度学习</span></span><span class="level-end"><span class="level-item tag">1</span></span></a></li><li><a class="level is-mobile is-marginless" href="/categories/%E8%A7%81%E9%97%BB/"><span class="level-start"><span class="level-item">见闻</span></span><span class="level-end"><span class="level-item tag">1</span></span></a></li><li><a class="level is-mobile is-marginless" href="/categories/%E9%A2%86%E5%9F%9F%E8%87%AA%E9%80%82%E5%BA%94/"><span class="level-start"><span class="level-item">领域自适应</span></span><span class="level-end"><span class="level-item tag">3</span></span></a></li></ul></div></div></div><div class="card widget"><div class="card-content"><h3 class="menu-label">最新文章</h3><article class="media"><a class="media-left" href="/2020/09/16/CPP/%E4%BD%BF%E7%94%A8%E5%AD%97%E7%AC%A6%E4%B8%B2/"><p class="image is-64x64"><img class="thumbnail" src="/gallery/cpp.png" alt="使用字符串"></p></a><div class="media-content size-small"><p><time dateTime="2020-09-16T02:37:31.000Z">2020-09-16</time></p><p class="title is-6"><a class="link-muted" href="/2020/09/16/CPP/%E4%BD%BF%E7%94%A8%E5%AD%97%E7%AC%A6%E4%B8%B2/">使用字符串</a></p><p class="is-uppercase"><a class="link-muted" href="/categories/cpp/">cpp</a></p></div></article><article class="media"><a class="media-left" href="/2020/09/15/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0/BDL/"><p class="image is-64x64"><img class="thumbnail" src="/gallery/BDL_TEASOR.png" alt="Bidirectional Learning for Domain Adaptation of Semantic Segmentation"></p></a><div class="media-content size-small"><p><time dateTime="2020-09-15T07:27:42.000Z">2020-09-15</time></p><p class="title is-6"><a class="link-muted" href="/2020/09/15/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0/BDL/">Bidirectional Learning for Domain Adaptation of Semantic Segmentation</a></p><p class="is-uppercase"><a class="link-muted" href="/categories/%E9%A2%86%E5%9F%9F%E8%87%AA%E9%80%82%E5%BA%94/">领域自适应</a></p></div></article><article class="media"><a class="media-left" href="/2020/09/15/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0/CAG_UDA/"><p class="image is-64x64"><img class="thumbnail" src="/gallery/CAG_TEASOR.png" alt="CAG_UDA"></p></a><div class="media-content size-small"><p><time dateTime="2020-09-15T01:34:11.000Z">2020-09-15</time></p><p class="title is-6"><a class="link-muted" href="/2020/09/15/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0/CAG_UDA/">CAG_UDA</a></p><p class="is-uppercase"><a class="link-muted" href="/categories/%E9%A2%86%E5%9F%9F%E8%87%AA%E9%80%82%E5%BA%94/">领域自适应</a></p></div></article><article class="media"><a class="media-left" href="/2020/09/12/CPP/%E5%BC%80%E5%A7%8B%E5%AD%A6%E4%B9%A0cpp/"><p class="image is-64x64"><img class="thumbnail" src="/gallery/cpp.png" alt="开始学习C++"></p></a><div class="media-content size-small"><p><time dateTime="2020-09-12T08:15:01.000Z">2020-09-12</time></p><p class="title is-6"><a class="link-muted" href="/2020/09/12/CPP/%E5%BC%80%E5%A7%8B%E5%AD%A6%E4%B9%A0cpp/">开始学习C++</a></p><p class="is-uppercase"><a class="link-muted" href="/categories/cpp/">cpp</a></p></div></article><article class="media"><a class="media-left" href="/2020/09/09/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0/%E6%B3%A8%E6%84%8F%E5%8A%9B%E6%9C%BA%E5%88%B6/"><p class="image is-64x64"><img class="thumbnail" src="/gallery/senet.png" alt="注意力机制"></p></a><div class="media-content size-small"><p><time dateTime="2020-09-09T09:29:55.000Z">2020-09-09</time></p><p class="title is-6"><a class="link-muted" href="/2020/09/09/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0/%E6%B3%A8%E6%84%8F%E5%8A%9B%E6%9C%BA%E5%88%B6/">注意力机制</a></p><p class="is-uppercase"><a class="link-muted" href="/categories/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0/">深度学习</a></p></div></article></div></div><div class="card widget"><div class="card-content"><div class="menu"><h3 class="menu-label">归档</h3><ul class="menu-list"><li><a class="level is-mobile is-marginless" href="/archives/2020/09/"><span class="level-start"><span class="level-item">九月 2020</span></span><span class="level-end"><span class="level-item tag">8</span></span></a></li><li><a class="level is-mobile is-marginless" href="/archives/2020/05/"><span class="level-start"><span class="level-item">五月 2020</span></span><span class="level-end"><span class="level-item tag">1</span></span></a></li></ul></div></div></div><div class="card widget"><div class="card-content"><div class="menu"><h3 class="menu-label">标签</h3><div class="field is-grouped is-grouped-multiline"><div class="control"><a class="tags has-addons" href="/tags/%E5%AD%97%E7%AC%A6%E4%B8%B2/"><span class="tag">字符串</span><span class="tag is-grey-lightest">1</span></a></div><div class="control"><a class="tags has-addons" href="/tags/%E6%9C%80%E5%B0%8F%E4%BA%8C%E4%B9%98%E6%B3%95/"><span class="tag">最小二乘法</span><span class="tag is-grey-lightest">1</span></a></div><div class="control"><a class="tags has-addons" href="/tags/%E6%B3%A8%E6%84%8F%E5%8A%9B%E6%9C%BA%E5%88%B6/"><span class="tag">注意力机制</span><span class="tag is-grey-lightest">1</span></a></div><div class="control"><a class="tags has-addons" href="/tags/%E7%BB%BC%E8%BF%B0/"><span class="tag">综述</span><span class="tag is-grey-lightest">1</span></a></div><div class="control"><a class="tags has-addons" href="/tags/%E8%A1%A8%E8%BE%BE%E5%BC%8F/"><span class="tag">表达式</span><span class="tag is-grey-lightest">1</span></a></div><div class="control"><a class="tags has-addons" href="/tags/%E8%AE%BA%E6%96%87%E9%98%85%E8%AF%BB/"><span class="tag">论文阅读</span><span class="tag is-grey-lightest">2</span></a></div></div></div></div></div></div><!--!--></div></div></section><footer class="footer"><div class="container"><div class="level"><div class="level-start"><a class="footer-logo is-block mb-2" href="/"><img src="/img/Digital.png" alt="Digital Shiyu" height="28"></a><p class="size-small"><span>© 2020 shiyu AllRightsReserved</span> Powered by <a href="https://hexo.io/" target="_blank" rel="noopener">Hexo</a> & <a href="https://github.com/ppoffice/hexo-theme-icarus" target="_blank" rel="noopener">Icarus</a><br><span id="busuanzi_container_site_uv">共<span id="busuanzi_value_site_uv">0</span>个访客</span></p></div><div class="level-end"></div></div></div></footer><script src="https://cdn.jsdelivr.net/npm/jquery@3.3.1/dist/jquery.min.js"></script><script src="https://cdn.jsdelivr.net/npm/moment@2.22.2/min/moment-with-locales.min.js"></script><script>moment.locale("zh-CN");</script><script>var IcarusThemeSettings = {
site: {
url: 'http://yoursite.com',
external_link: {"enable":true,"exclude":[]}
},
article: {
highlight: {
clipboard: true,
fold: 'unfolded'
}
}
};</script><script src="https://cdn.jsdelivr.net/npm/clipboard@2.0.4/dist/clipboard.min.js" defer></script><a id="back-to-top" title="回到顶端" href="javascript:;"><i class="fas fa-chevron-up"></i></a><script src="/js/back_to_top.js" defer></script><!--!--><!--!--><!--!--><script src="https://cdn.jsdelivr.net/npm/lightgallery@1.6.8/dist/js/lightgallery.min.js" defer></script><script src="https://cdn.jsdelivr.net/npm/justifiedGallery@3.7.0/dist/js/jquery.justifiedGallery.min.js" defer></script><script>window.addEventListener("load", () => {
if (typeof $.fn.lightGallery === 'function') {
$('.article').lightGallery({ selector: '.gallery-item' });
}
if (typeof $.fn.justifiedGallery === 'function') {
if ($('.justified-gallery > p > .gallery-item').length) {
$('.justified-gallery > p > .gallery-item').unwrap();
}
$('.justified-gallery').justifiedGallery();
}
});</script><!--!--><!--!--><!--!--><script src="/js/main.js" defer></script><div class="searchbox"><div class="searchbox-container"><div class="searchbox-header"><div class="searchbox-input-container"><input class="searchbox-input" type="text" placeholder="想要查找什么..."></div><a class="searchbox-close" href="javascript:;">×</a></div><div class="searchbox-body"></div></div></div><script src="/js/insight.js" defer></script><script>document.addEventListener('DOMContentLoaded', function () {
loadInsight({"contentUrl":"/content.json"}, {"hint":"想要查找什么...","untitled":"(无标题)","posts":"文章","pages":"页面","categories":"分类","tags":"标签"});
});</script></body></html>