-
Notifications
You must be signed in to change notification settings - Fork 0
/
visuals.py
130 lines (102 loc) · 4.89 KB
/
visuals.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
###########################################
# Suppress matplotlib user warnings
# Necessary for newer version of matplotlib
import warnings
warnings.filterwarnings("ignore", category = UserWarning, module = "matplotlib")
#
# Display inline matplotlib plots with IPython
from IPython import get_ipython
get_ipython().run_line_magic('matplotlib', 'inline')
###########################################
import matplotlib.pyplot as pl
import numpy as np
import sklearn.learning_curve as curves
from sklearn.tree import DecisionTreeRegressor
from sklearn.cross_validation import ShuffleSplit, train_test_split
def ModelLearning(X, y):
""" Calculates the performance of several models with varying sizes of training data.
The learning and testing scores for each model are then plotted. """
# Create 10 cross-validation sets for training and testing
cv = ShuffleSplit(X.shape[0], n_iter = 10, test_size = 0.2, random_state = 0)
# Generate the training set sizes increasing by 50
train_sizes = np.rint(np.linspace(1, X.shape[0]*0.8 - 1, 9)).astype(int)
# Create the figure window
fig = pl.figure(figsize=(10,7))
# Create three different models based on max_depth
for k, depth in enumerate([1,3,6,10]):
# Create a Decision tree regressor at max_depth = depth
regressor = DecisionTreeRegressor(max_depth = depth)
# Calculate the training and testing scores
sizes, train_scores, test_scores = curves.learning_curve(regressor, X, y, \
cv = cv, train_sizes = train_sizes, scoring = 'r2')
# Find the mean and standard deviation for smoothing
train_std = np.std(train_scores, axis = 1)
train_mean = np.mean(train_scores, axis = 1)
test_std = np.std(test_scores, axis = 1)
test_mean = np.mean(test_scores, axis = 1)
# Subplot the learning curve
ax = fig.add_subplot(2, 2, k+1)
ax.plot(sizes, train_mean, 'o-', color = 'r', label = 'Training Score')
ax.plot(sizes, test_mean, 'o-', color = 'g', label = 'Testing Score')
ax.fill_between(sizes, train_mean - train_std, \
train_mean + train_std, alpha = 0.15, color = 'r')
ax.fill_between(sizes, test_mean - test_std, \
test_mean + test_std, alpha = 0.15, color = 'g')
# Labels
ax.set_title('max_depth = %s'%(depth))
ax.set_xlabel('Number of Training Points')
ax.set_ylabel('Score')
ax.set_xlim([0, X.shape[0]*0.8])
ax.set_ylim([-0.05, 1.05])
# Visual aesthetics
ax.legend(bbox_to_anchor=(1.05, 2.05), loc='lower left', borderaxespad = 0.)
fig.suptitle('Decision Tree Regressor Learning Performances', fontsize = 16, y = 1.03)
fig.tight_layout()
fig.show()
def ModelComplexity(X, y):
""" Calculates the performance of the model as model complexity increases.
The learning and testing errors rates are then plotted. """
# Create 10 cross-validation sets for training and testing
cv = ShuffleSplit(X.shape[0], n_iter = 10, test_size = 0.2, random_state = 0)
# Vary the max_depth parameter from 1 to 10
max_depth = np.arange(1,11)
# Calculate the training and testing scores
train_scores, test_scores = curves.validation_curve(DecisionTreeRegressor(), X, y, \
param_name = "max_depth", param_range = max_depth, cv = cv, scoring = 'r2')
# Find the mean and standard deviation for smoothing
train_mean = np.mean(train_scores, axis=1)
train_std = np.std(train_scores, axis=1)
test_mean = np.mean(test_scores, axis=1)
test_std = np.std(test_scores, axis=1)
# Plot the validation curve
pl.figure(figsize=(7, 5))
pl.title('Decision Tree Regressor Complexity Performance')
pl.plot(max_depth, train_mean, 'o-', color = 'r', label = 'Training Score')
pl.plot(max_depth, test_mean, 'o-', color = 'g', label = 'Validation Score')
pl.fill_between(max_depth, train_mean - train_std, \
train_mean + train_std, alpha = 0.15, color = 'r')
pl.fill_between(max_depth, test_mean - test_std, \
test_mean + test_std, alpha = 0.15, color = 'g')
# Visual aesthetics
pl.legend(loc = 'lower right')
pl.xlabel('Maximum Depth')
pl.ylabel('Score')
pl.ylim([-0.05,1.05])
pl.show()
def PredictTrials(X, y, fitter, data):
""" Performs trials of fitting and predicting data. """
# Store the predicted prices
prices = []
for k in range(10):
# Split the data
X_train, X_test, y_train, y_test = train_test_split(X, y, \
test_size = 0.2, random_state = k)
# Fit the data
reg = fitter(X_train, y_train)
# Make a prediction
pred = reg.predict([data[0]])[0]
prices.append(pred)
# Result
print "Trial {}: ${:,.2f}".format(k+1, pred)
# Display price range
print "\nRange in prices: ${:,.2f}".format(max(prices) - min(prices))