forked from raminmh/CfC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathduv_person_activity.py
411 lines (337 loc) · 13.8 KB
/
duv_person_activity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
###########################
# Latent ODEs for Irregularly-Sampled Time Series
# Authors: Yulia Rubanova and Ricky Chen
###########################
import os
from sklearn import model_selection
import duv_utils as utils
import numpy as np
import tarfile
import torch
from torch.utils.data import DataLoader
from torchvision.datasets.utils import download_url
# Adapted from: https://github.com/rtqichen/time-series-datasets
class PersonActivity(object):
urls = [
"https://archive.ics.uci.edu/ml/machine-learning-databases/00196/ConfLongDemo_JSI.txt",
]
tag_ids = [
"010-000-024-033", # "ANKLE_LEFT",
"010-000-030-096", # "ANKLE_RIGHT",
"020-000-033-111", # "CHEST",
"020-000-032-221", # "BELT"
]
tag_dict = {k: i for i, k in enumerate(tag_ids)}
label_names = [
"walking",
"falling",
"lying down",
"lying",
"sitting down",
"sitting",
"standing up from lying",
"on all fours",
"sitting on the ground",
"standing up from sitting",
"standing up from sit on grnd",
]
# label_dict = {k: i for i, k in enumerate(label_names)}
# Merge similar labels into one class
label_dict = {
"walking": 0,
"falling": 1,
"lying": 2,
"lying down": 2,
"sitting": 3,
"sitting down": 3,
"standing up from lying": 4,
"standing up from sitting": 4,
"standing up from sit on grnd": 4,
"on all fours": 5,
"sitting on the ground": 6,
}
def __init__(
self,
root,
download=False,
reduce="average",
max_seq_length=50,
n_samples=None,
device=torch.device("cpu"),
):
self.root = root
self.reduce = reduce
self.max_seq_length = max_seq_length
if download:
self.download()
if not self._check_exists():
raise RuntimeError(
"Dataset not found. You can use download=True to download it"
)
if device == torch.device("cpu"):
self.data = torch.load(
os.path.join(self.processed_folder, self.data_file), map_location="cpu"
)
else:
self.data = torch.load(os.path.join(self.processed_folder, self.data_file))
if n_samples is not None:
self.data = self.data[:n_samples]
def download(self):
if self._check_exists():
return
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
os.makedirs(self.raw_folder, exist_ok=True)
os.makedirs(self.processed_folder, exist_ok=True)
def save_record(records, record_id, tt, vals, mask, labels):
tt = torch.tensor(tt).to(self.device)
vals = torch.stack(vals)
mask = torch.stack(mask)
labels = torch.stack(labels)
# flatten the measurements for different tags
vals = vals.reshape(vals.size(0), -1)
mask = mask.reshape(mask.size(0), -1)
assert len(tt) == vals.size(0)
assert mask.size(0) == vals.size(0)
assert labels.size(0) == vals.size(0)
# records.append((record_id, tt, vals, mask, labels))
seq_length = len(tt)
# split the long time series into smaller ones
offset = 0
slide = self.max_seq_length // 2
while offset + self.max_seq_length < seq_length:
idx = range(offset, offset + self.max_seq_length)
first_tp = tt[idx][0]
records.append(
(record_id, tt[idx] - first_tp, vals[idx], mask[idx], labels[idx])
)
offset += slide
for url in self.urls:
filename = url.rpartition("/")[2]
download_url(url, self.raw_folder, filename, None)
print("Processing {}...".format(filename))
dirname = os.path.join(self.raw_folder)
records = []
first_tp = None
for txtfile in os.listdir(dirname):
with open(os.path.join(dirname, txtfile)) as f:
lines = f.readlines()
prev_time = -1
tt = []
record_id = None
for l in lines:
(
cur_record_id,
tag_id,
time,
date,
val1,
val2,
val3,
label,
) = l.strip().split(",")
value_vec = torch.Tensor(
(float(val1), float(val2), float(val3))
).to(self.device)
time = float(time)
if cur_record_id != record_id:
if record_id is not None:
save_record(records, record_id, tt, vals, mask, labels)
tt, vals, mask, nobs, labels = [], [], [], [], []
record_id = cur_record_id
tt = [torch.zeros(1).to(self.device)]
vals = [torch.zeros(len(self.tag_ids), 3).to(self.device)]
mask = [torch.zeros(len(self.tag_ids), 3).to(self.device)]
nobs = [torch.zeros(len(self.tag_ids)).to(self.device)]
labels = [
torch.zeros(len(self.label_names)).to(self.device)
]
first_tp = time
time = round((time - first_tp) / 10 ** 5)
prev_time = time
else:
# for speed -- we actually don't need to quantize it in Latent ODE
time = round(
(time - first_tp) / 10 ** 5
) # quatizing by 100 ms. 10,000 is one millisecond, 10,000,000 is one second
if time != prev_time:
tt.append(time)
vals.append(
torch.zeros(len(self.tag_ids), 3).to(self.device)
)
mask.append(
torch.zeros(len(self.tag_ids), 3).to(self.device)
)
nobs.append(torch.zeros(len(self.tag_ids)).to(self.device))
labels.append(
torch.zeros(len(self.label_names)).to(self.device)
)
prev_time = time
if tag_id in self.tag_ids:
n_observations = nobs[-1][self.tag_dict[tag_id]]
if (self.reduce == "average") and (n_observations > 0):
prev_val = vals[-1][self.tag_dict[tag_id]]
new_val = (prev_val * n_observations + value_vec) / (
n_observations + 1
)
vals[-1][self.tag_dict[tag_id]] = new_val
else:
vals[-1][self.tag_dict[tag_id]] = value_vec
mask[-1][self.tag_dict[tag_id]] = 1
nobs[-1][self.tag_dict[tag_id]] += 1
if label in self.label_names:
if torch.sum(labels[-1][self.label_dict[label]]) == 0:
labels[-1][self.label_dict[label]] = 1
else:
assert (
tag_id == "RecordID"
), "Read unexpected tag id {}".format(tag_id)
save_record(records, record_id, tt, vals, mask, labels)
torch.save(records, os.path.join(self.processed_folder, "data.pt"))
print("Done!")
def _check_exists(self):
for url in self.urls:
filename = url.rpartition("/")[2]
if not os.path.exists(os.path.join(self.processed_folder, "data.pt")):
return False
return True
@property
def raw_folder(self):
return os.path.join(self.root, self.__class__.__name__, "raw")
@property
def processed_folder(self):
return os.path.join(self.root, self.__class__.__name__, "processed")
@property
def data_file(self):
return "data.pt"
def __getitem__(self, index):
return self.data[index]
def __len__(self):
return len(self.data)
def __repr__(self):
fmt_str = "Dataset " + self.__class__.__name__ + "\n"
fmt_str += " Number of datapoints: {}\n".format(self.__len__())
fmt_str += " Root Location: {}\n".format(self.root)
fmt_str += " Max length: {}\n".format(self.max_seq_length)
fmt_str += " Reduce: {}\n".format(self.reduce)
return fmt_str
def get_person_id(record_id):
# The first letter is the person id
person_id = record_id[0]
person_id = ord(person_id) - ord("A")
return person_id
def variable_time_collate_fn_activity(
batch, args, device=torch.device("cpu"), data_type="train"
):
"""
Expects a batch of time series data in the form of (record_id, tt, vals, mask, labels) where
- record_id is a patient id
- tt is a 1-dimensional tensor containing T time values of observations.
- vals is a (T, D) tensor containing observed values for D variables.
- mask is a (T, D) tensor containing 1 where values were observed and 0 otherwise.
- labels is a list of labels for the current patient, if labels are available. Otherwise None.
Returns:
combined_tt: The union of all time observations.
combined_vals: (M, T, D) tensor containing the observed values.
combined_mask: (M, T, D) tensor containing 1 where values were observed and 0 otherwise.
"""
D = batch[0][2].shape[1]
N = batch[0][-1].shape[1] # number of labels
combined_tt, inverse_indices = torch.unique(
torch.cat([ex[1] for ex in batch]), sorted=True, return_inverse=True
)
combined_tt = combined_tt.to(device)
offset = 0
combined_vals = torch.zeros([len(batch), len(combined_tt), D]).to(device)
combined_mask = torch.zeros([len(batch), len(combined_tt), D]).to(device)
combined_labels = torch.zeros([len(batch), len(combined_tt), N]).to(device)
for b, (record_id, tt, vals, mask, labels) in enumerate(batch):
tt = tt.to(device)
vals = vals.to(device)
mask = mask.to(device)
labels = labels.to(device)
indices = inverse_indices[offset : offset + len(tt)]
offset += len(tt)
combined_vals[b, indices] = vals
combined_mask[b, indices] = mask
combined_labels[b, indices] = labels
combined_tt = combined_tt.float()
if torch.max(combined_tt) != 0.0:
combined_tt = combined_tt / torch.max(combined_tt)
breakpoint()
data_dict = {
"data": combined_vals,
"time_steps": combined_tt,
"mask": combined_mask,
"labels": combined_labels,
}
data_dict = utils.split_and_subsample_batch(data_dict, args, data_type=data_type)
return data_dict
def get_person_dataset(args):
n_samples = min(10000, args.n)
device = torch.device("cpu")
dataset_obj = PersonActivity(
"data/PersonActivity", download=True, n_samples=n_samples, device=device
)
print(dataset_obj)
# Use custom collate_fn to combine samples with arbitrary time observations.
# Returns the dataset along with mask and time steps
# Shuffle and split
train_data, test_data = model_selection.train_test_split(
dataset_obj, train_size=0.8, random_state=42, shuffle=True
)
train_data = [
train_data[i] for i in np.random.choice(len(train_data), len(train_data))
]
test_data = [test_data[i] for i in np.random.choice(len(test_data), len(test_data))]
record_id, tt, vals, mask, labels = train_data[0]
input_dim = vals.size(-1)
batch_size = min(min(len(dataset_obj), args.batch_size), args.n)
train_dataloader = DataLoader(
train_data,
batch_size=batch_size,
shuffle=True,
num_workers=4,
# collate_fn=lambda batch: variable_time_collate_fn_activity(
# batch, args, device, data_type="train"
# ),
)
test_dataloader = DataLoader(
test_data,
batch_size=n_samples,
num_workers=4,
shuffle=False,
# collate_fn=lambda batch: variable_time_collate_fn_activity(
# batch, args, device, data_type="test"
# ),
)
data_objects = {
"dataset_obj": dataset_obj,
"train_dataloader": train_dataloader,
"test_dataloader": test_dataloader,
"input_dim": input_dim,
"n_train_batches": len(train_dataloader),
"n_test_batches": len(test_dataloader),
"classif_per_tp": True, # optional
"n_labels": labels.size(-1),
}
return data_objects
if __name__ == "__main__":
torch.manual_seed(1991)
class FakeArg:
batch_size = 32
classif = True
extrap = False
sample_tp = None
cut_tp = None
n = 10000
ds = get_person_dataset(FakeArg())
for batch in ds["train_dataloader"]:
breakpoint()
# dataset = PersonActivity("data/PersonActivity", download=True)
# dataloader = DataLoader(
# dataset,
# batch_size=30,
# shuffle=True,
# collate_fn=variable_time_collate_fn_activity,
# )
# dataloader.__iter__().next()