@@ -50,7 +50,11 @@ def _fit(self, y, exog=None):
50
50
51
51
Parameters
52
52
----------
53
- X : Time series on which to learn a forecaster
53
+ y : np.ndarray
54
+ A time series on which to learn a forecaster to predict horizon ahead.
55
+ exog : np.ndarray, default=None
56
+ Optional exogenous time series data. Included for interface
57
+ compatibility but ignored in this estimator.
54
58
55
59
Returns
56
60
-------
@@ -74,14 +78,44 @@ def _fit(self, y, exog=None):
74
78
return self
75
79
76
80
def _predict (self , y = None , exog = None ):
77
- """Predict values for time series X."""
81
+ """
82
+ Predict the next horizon steps ahead.
83
+
84
+ Parameters
85
+ ----------
86
+ y : np.ndarray, default = None
87
+ A time series to predict the next horizon value for. If None,
88
+ predict the next horizon value after series seen in fit.
89
+ exog : np.ndarray, default=None
90
+ Optional exogenous time series data. Included for interface
91
+ compatibility but ignored in this estimator.
92
+
93
+ Returns
94
+ -------
95
+ np.ndarray
96
+ single prediction self.horizon steps ahead of y.
97
+ """
78
98
if y is None :
79
99
return self .regressor_ .predict (self .last_ )
80
100
last = y [:, - self .window :]
81
101
return self .regressor_ .predict (last )
82
102
83
103
def _forecast (self , y , exog = None ):
84
- """Forecast values for time series X.
104
+ """
105
+ Forecast the next horizon steps ahead.
106
+
107
+ Parameters
108
+ ----------
109
+ y : np.ndarray
110
+ A time series to predict the next horizon value for.
111
+ exog : np.ndarray, default=None
112
+ Optional exogenous time series data. Included for interface
113
+ compatibility but ignored in this estimator.
114
+
115
+ Returns
116
+ -------
117
+ np.ndarray
118
+ single prediction self.horizon steps ahead of y.
85
119
86
120
NOTE: deal with horizons
87
121
"""
0 commit comments