-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathextract.py
687 lines (576 loc) · 23.9 KB
/
extract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
import difflib
import pickle
import cv2
import numpy as np
from keras.models import model_from_yaml
from cluster import cluster_letters_to_words
from globals import GLOBAL_hobj, GLOBAL_fuzzylist
Y_SQUASH = 40.0
def order_points(pts):
# initialzie a list of coordinates that will be ordered
# such that the first entry in the list is the top-left,
# the second entry is the top-right, the third is the
# bottom-right, and the fourth is the bottom-left
rect = np.zeros((4, 2), dtype="float32")
# the top-left point will have the smallest sum, whereas
# the bottom-right point will have the largest sum
s = pts.sum(axis=1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
# now, compute the difference between the points, the
# top-right point will have the smallest difference,
# whereas the bottom-left will have the largest difference
diff = np.diff(pts, axis=1)
rect[1] = pts[np.argmin(diff)]
rect[3] = pts[np.argmax(diff)]
# return the ordered coordinates
return rect
def four_point_transform(image, pts):
# obtain a consistent order of the points and unpack them
# individually
rect = order_points(pts)
(tl, tr, br, bl) = rect
# compute the width of the new image, which will be the
# maximum distance between bottom-right and bottom-left
# x-coordiates or the top-right and top-left x-coordinates
widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
maxWidth = max(int(widthA), int(widthB))
# compute the height of the new image, which will be the
# maximum distance between the top-right and bottom-right
# y-coordinates or the top-left and bottom-left y-coordinates
heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
maxHeight = max(int(heightA), int(heightB))
# now that we have the dimensions of the new image, construct
# the set of destination points to obtain a "birds eye view",
# (i.e. top-down view) of the image, again specifying points
# in the top-left, top-right, bottom-right, and bottom-left
# order
dst = np.array([
[0, 0],
[maxWidth - 1, 0],
[maxWidth - 1, maxHeight - 1],
[0, maxHeight - 1]], dtype="float32")
# compute the perspective transform matrix and then apply it
M = cv2.getPerspectiveTransform(rect, dst)
warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
# return the warped image
return warped
# print(cv2.__version__)
def unwarp(image):
img_scale = cv2.resize(image, None, fx=1 / 3.0, fy=1 / 3.0, interpolation=cv2.INTER_CUBIC)
# img_scale = image
# cv2.imshow("scale", img_scale)
img = cv2.cvtColor(img_scale, cv2.COLOR_BGR2GRAY);
# cv2.imshow("2gray", img)
gray = cv2.bilateralFilter(img, 11, 21, 21)
# cv2.imshow("bilateral", gray)
edged = cv2.Canny(gray, 0, 70)
# cv2.imshow("edged", edged)
image2, contours, hierarchy = cv2.findContours(edged.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# cv2.imshow("image2", image2)
cnts = sorted(contours, key=cv2.contourArea, reverse=True)[:5]
# loop over our contours
screenCnt = []
for c in cnts:
# approximate the contour
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.02 * peri, True)
# if our approximated contour has four points, then we
# can assume that we have found our screen
if len(approx) == 4:
screenCnt = approx
break
if len(screenCnt) == 0:
return None
warped = four_point_transform(img_scale, screenCnt.reshape(4, 2))
# cv2.imshow("warped", warped)
height = warped.shape[0]
width = warped.shape[1]
# print ("width: {0}, height: {1}".format(width, height))
xmargin = 10
ymargin = 10
crop_img = warped[ymargin:(height - 2 * ymargin), xmargin:(width - 2 * xmargin)] # img[y: y + h, x: x + w]
# cv2.imshow("cropped", crop_img)
# cv2.waitKey(0)
return crop_img
# Malisiewicz et al.
def non_max_suppression_fast(boxes, overlapThresh):
# if there are no boxes, return an empty list
if len(boxes) == 0:
return []
# if the bounding boxes integers, convert them to floats --
# this is important since we'll be doing a bunch of divisions
if boxes.dtype.kind == "i":
boxes = boxes.astype("float")
# initialize the list of picked indexes
pick = []
# grab the coordinates of the bounding boxes
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
# compute the area of the bounding boxes and sort the bounding
# boxes by the bottom-right y-coordinate of the bounding box
area = (x2 - x1 + 1) * (y2 - y1 + 1)
idxs = np.argsort(y2)
# keep looping while some indexes still remain in the indexes
# list
while len(idxs) > 0:
# grab the last index in the indexes list and add the
# index value to the list of picked indexes
last = len(idxs) - 1
i = idxs[last]
pick.append(i)
# find the largest (x, y) coordinates for the start of
# the bounding box and the smallest (x, y) coordinates
# for the end of the bounding box
xx1 = np.maximum(x1[i], x1[idxs[:last]])
yy1 = np.maximum(y1[i], y1[idxs[:last]])
xx2 = np.minimum(x2[i], x2[idxs[:last]])
yy2 = np.minimum(y2[i], y2[idxs[:last]])
# compute the width and height of the bounding box
w = np.maximum(0, xx2 - xx1 + 1)
h = np.maximum(0, yy2 - yy1 + 1)
# compute the ratio of overlap
overlap = (w * h) / area[idxs[:last]]
# delete all indexes from the index list that have
idxs = np.delete(idxs, np.concatenate(([last],
np.where(overlap > overlapThresh)[0])))
# return only the bounding boxes that were picked using the
# integer data type
return boxes[pick].astype("int")
def rect_in_rect(enclosed_rect, enclosing_rect):
r1x1 = enclosed_rect[0]
r1y1 = enclosed_rect[1]
r1x2 = enclosed_rect[0] + enclosed_rect[2]
r1y2 = enclosed_rect[1] + enclosed_rect[3]
r2x1 = enclosing_rect[0]
r2y1 = enclosing_rect[1]
r2x2 = enclosing_rect[0] + enclosing_rect[2]
r2y2 = enclosing_rect[1] + enclosing_rect[3]
return (r2x1 <= r1x1 <= r2x2 and \
r2x1 <= r1x2 <= r2x2 and \
r2y1 <= r1y1 <= r2y2 and \
r2y1 <= r1y2 <= r2y2)
def rect_area(r1):
return r1[2] * r1[3]
def find_letters(image):
cnts = find_contours(image)
letters = contours_to_boundingboxes(cnts)
final_letters, unwarped_image = remove_doubles_and_overlaps(image, letters)
return final_letters, unwarped_image
def remove_doubles_and_overlaps(image, letters):
numpy_letters = np.array(letters)
# print (numpy_letters)
numpy_letters = non_max_suppression_fast(numpy_letters, 0.2)
# print(len(numpy_letters))
remove_idx = set([])
for i in range(len(numpy_letters)):
if rect_area(numpy_letters[i]) < 50:
remove_idx.add(i)
else:
for j in range(len(numpy_letters)):
if i != j:
if rect_in_rect(numpy_letters[i], numpy_letters[j]):
remove_idx.add(i)
# print (remove_idx)
final_letters = [letter for (i, letter) in enumerate(numpy_letters) if i not in remove_idx]
unwarped_image = image.copy()
for l in final_letters:
x = l[0]
y = l[1]
x2 = x + l[2]
y2 = y + l[3]
cv2.rectangle(unwarped_image, (x, y), (x2, y2), 3)
return final_letters, unwarped_image
def remove_doubles_and_overlaps_for_single_letter(image, letters):
final_letters, boxed_image = remove_doubles_and_overlaps(image, letters)
minx = 1e10
miny = 1e10
maxx = -1e10
maxy = -1e10
if final_letters:
for letter in final_letters:
x = letter[0]
x2 = x + letter[2]
y = letter[1]
y2 = y + letter[3]
minx = min([x, minx])
maxx = max([x2, maxx])
miny = min([y, miny])
maxy = max([y2, maxy])
# print("minx, maxx, miny, maxy = ", [minx, maxx, miny, maxy])
cv2.rectangle(boxed_image, (minx, miny), (maxx, maxy), (0, 0, 0), 1)
return [(minx, miny, maxx - minx, maxy - miny)], boxed_image
return None, None
def contours_to_boundingboxes(cnts):
letters = []
for i, c in enumerate(cnts):
contour = c[2]
peri = cv2.arcLength(contour, True)
approx = cv2.approxPolyDP(contour, 0.02 * peri, True)
x, y, w, h = cv2.boundingRect(contour)
letters.append((x, y, w, h))
# print(x, y, w, h)
return letters
def find_contours(image):
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY);
# V = cv2.split(cv2.cvtColor(image, cv2.COLOR_BGR2HSV))[2]
# thresh = threshold_adaptive(V, 101, offset=15).astype("uint8") * 255
# thresh = cv2.bitwise_not(thresh)
# gray = thresh
gray = cv2.bilateralFilter(gray, 5, 51, 51)
edged = cv2.Canny(gray, 0, 100)
image3, contours3, hierarchy3 = cv2.findContours(edged, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = []
found = set({})
for c in contours3:
M = cv2.moments(c)
if M['m00']:
cx = int(int(M['m10'] / M['m00']))
cy = int(int(M['m01'] / M['m00']))
if (cx, cy) not in found:
found.add((cx, cy))
cnts.append((cy, cx, c))
return cnts
def dist(x1, y1, x2, y2):
return np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
def debug_display(title, list_of_images):
if not list_of_images:
return
l = len(list_of_images)
cols = int(np.ceil(np.sqrt(l)))
rows = int(np.ceil(l / cols))
height, width = list_of_images[0].shape
total_image = np.zeros((height * cols, width * rows))
counter = 0
for c in range(cols):
for r in range(rows):
if counter < l:
total_image[c * height: (c + 1) * height, r * width: (r + 1) * width] = list_of_images[counter]
counter += 1
cv2.imshow(title, total_image)
cv2.waitKey(1)
def cutout_letters(unwarped_image, letters, xmargin=3, ymargin=3, desired_width=28, desired_height=28):
unwarped_image = cv2.cvtColor(unwarped_image, cv2.COLOR_BGR2GRAY);
# cv2.imshow("unwarped", unwarped_image)
result = []
prevX = None
prevY = None
for i, l in enumerate(sorted(letters, key=lambda x: (int(x[1] / Y_SQUASH), x[0]))):
new_word = False
x = l[0]
y = l[1]
w = l[2]
h = l[3]
if prevX is None:
distance = 0
prevX = x
prevY = y
else:
distance = dist(prevX, prevY, x, y)
prevX = x
prevY = y
if distance > w * 3:
new_word = True
cropped_letter = unwarped_image[y:y + h, x:x + w]
maxdim = max(h, w)
if h > w:
extra_height = 0
extra_width = int((h - w) / 2)
else:
extra_height = int((w - h) / 2)
extra_width = 0
# blur = cv2.GaussianBlur(cropped_letter, (3, 3), sigmaX=1, sigmaY=1)
blur = cv2.GaussianBlur(cropped_letter, (5, 5), 0)
ret3, th3 = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# th3 = cv2.adaptiveThreshold(blur, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, \
# cv2.THRESH_BINARY, 11, 2)
padded_cropped_letter = cv2.copyMakeBorder(th3, top=extra_height, bottom=extra_height,
left=extra_width, right=extra_width,
borderType=cv2.BORDER_CONSTANT, value=[255, 255, 255])
current_width = padded_cropped_letter.shape[1]
current_height = padded_cropped_letter.shape[0]
# cv2.imshow("{0}".format(i + 1), padded_cropped_letter)
scaled_cropped_letter = cv2.resize(padded_cropped_letter, None,
fx=(desired_width - 2 * xmargin) / current_width,
fy=(desired_height - 2 * ymargin) / current_height,
interpolation=cv2.INTER_LINEAR)
if (xmargin > 0) or (ymargin > 0):
bordered = cv2.copyMakeBorder(scaled_cropped_letter, top=ymargin, bottom=ymargin,
left=xmargin, right=xmargin,
borderType=cv2.BORDER_CONSTANT,
value=[255, 255, 255])
else:
bordered = scaled_cropped_letter
# th3_blur = cv2.GaussianBlur(255-th3, (5, 5), 0)
th3_inv_blur = 255 - bordered
blur_th3 = th3_inv_blur
# cv2.imshow("{0}".format(i + 1), th3_inv_blur)
# cv2.waitKey(0)
if new_word:
result.append(None)
# print("MAX: ", np.amax(blur_th3), " MIN: ", np.amin(blur_th3), " MEDIAN: ", np.median(blur_th3))
result.append([blur_th3.copy(), (x + w / 2, y + h / 2)])
visualization = [r[0] for r in result if r is not None]
debug_display("found letters", visualization)
return result
def cutout_grayscale_letters(unwarped_image, letters, xmargin=3, ymargin=3, desired_width=28, desired_height=28):
# cv2.imshow("unwarped", unwarped_image)
result = []
for l in letters:
new_word = False
x = l[0]
y = l[1]
w = l[2]
h = l[3]
cropped_letter = unwarped_image[y:y + h, x:x + w]
maxdim = max(h, w)
if h > w:
extra_height = 0
extra_width = int((h - w) / 2)
else:
extra_height = int((w - h) / 2)
extra_width = 0
# blur = cv2.GaussianBlur(cropped_letter, (3, 3), sigmaX=1, sigmaY=1)
blur = cv2.GaussianBlur(cropped_letter, (1, 1), 0)
ret3, th3 = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# cv2.imshow("otsu", th3)
# th4 = cv2.adaptiveThreshold(blur, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, \
# cv2.THRESH_BINARY, 11, 2)
# cv2.imshow("adaptive", th4)
# th5 = th3.copy()
# cv2.multiply(255-th3, 255-th4, th5)
# th3 = 255-th5
# cv2.imshow("multiplication", th3)
# cv2.waitKey(0)
padded_cropped_letter = cv2.copyMakeBorder(th3, top=extra_height, bottom=extra_height,
left=extra_width, right=extra_width,
borderType=cv2.BORDER_CONSTANT, value=[255, 255, 255])
current_width = padded_cropped_letter.shape[1]
current_height = padded_cropped_letter.shape[0]
# cv2.imshow("{0}".format(i + 1), padded_cropped_letter)
scaled_cropped_letter = cv2.resize(padded_cropped_letter, None,
fx=(desired_width - 2 * xmargin) / current_width,
fy=(desired_height - 2 * ymargin) / current_height,
interpolation=cv2.INTER_LINEAR)
if (xmargin > 0) or (ymargin > 0):
bordered = cv2.copyMakeBorder(scaled_cropped_letter, top=ymargin, bottom=ymargin,
left=xmargin, right=xmargin,
borderType=cv2.BORDER_CONSTANT,
value=[255, 255, 255])
else:
bordered = scaled_cropped_letter
# th3_blur = cv2.GaussianBlur(255-th3, (5, 5), 0)
th3_inv_blur = 255 - bordered
blur_th3 = th3_inv_blur
# cv2.imshow("{0}".format(i + 1), th3_inv_blur)
# cv2.waitKey(0)
# print("MAX: ", np.amax(blur_th3), " MIN: ", np.amin(blur_th3), " MEDIAN: ", np.median(blur_th3))
result.append([blur_th3.copy(), (x, y, w, h)]) # or: y + h : use bottom point as reference instead of middle
visualization = [r[0] for r in result if r is not None]
debug_display("found letters", visualization)
return result
def load_model(bin_dir):
''' Load model from .yaml and the weights from .h5
Arguments:
bin_dir: The directory of the bin (normally bin/)
Returns:
Loaded model from file
'''
# load YAML and create model
yaml_file = open('%s/model.yaml' % bin_dir, 'r')
loaded_model_yaml = yaml_file.read()
yaml_file.close()
model = model_from_yaml(loaded_model_yaml)
# load weights into new model
model.load_weights('%s/model.h5' % bin_dir)
return model
def predict(model, mapping, img):
# print(img.shape)
x = img.reshape(1, 28, 28, 1)
# Convert type to float32
x = x.astype('float32')
# Normalize to prevent issues with model
x /= 255
# Predict from model
out = model.predict(x)
# Generate response
response = chr(mapping[(int(np.argmax(out, axis=1)[0]))])
return response
def cleanup_word(word, use_spellcheck_instead_of_commands_txt=False):
word = word.replace("0", "O").replace("2", "b").replace("8", "b").lower()
if use_spellcheck_instead_of_commands_txt:
if GLOBAL_hobj.spell(word):
print(word)
return word
else:
suggestions = GLOBAL_hobj.suggest(word)
if suggestions:
for s in suggestions:
if len(s) == len(word):
print(word, " cleaned up to: ", s, " from possible: ", suggestions)
return s.lower()
print(word, " cleaned up to: ", suggestions[0], " from possible ", suggestions)
return suggestions[0].lower()
else:
print("unrecognized word: ", word)
return word
else:
corrected = fuzzy_correct(word, GLOBAL_fuzzylist)
print("corrected {0} to {1}".format(word, corrected))
return corrected
def fuzzy_correct(word, list_of_possible_words):
closematch = difflib.get_close_matches(word, list_of_possible_words)
if closematch:
return closematch[0]
return word
def main():
bindir = "/home/shimpe/development/python/hippoglyph/EMNIST/bin"
image = cv2.imread("/home/shimpe/development/python/hippoglyph/img.jpg")
# cv2.imshow("original", image)
model = load_model(bindir)
mapping = pickle.load(open('%s/mapping.p' % bindir, 'rb'))
unwarped_image = unwarp(image)
letters, letter_image = find_letters(unwarped_image)
cut_letters = cutout_letters(unwarped_image, letters)
words = []
current_word = ""
wordX = 0
wordY = 0
wordLen = 0
for l in cut_letters:
if l is None:
words.append([cleanup_word(current_word), (wordX, wordY)])
current_word = ""
wordX = 0
wordY = 0
wordLen = 0
else:
letter, pos = l[0], l[1]
wordX += pos[0]
wordY += pos[1]
wordLen += 1
current_word += predict(model, mapping, letter)
if current_word:
avgX = wordX / wordLen if wordLen != 0 else 0
avgY = wordY / wordLen if wordLen != 0 else 0
words.append((cleanup_word(current_word), (avgX, avgY)))
print(" ".join([w[0] for w in words]))
print(" ".join([str(pos[1]) for pos in words]))
# cv2.imshow("letters", letter_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
def main2():
# bindir = "c:\\deleteme\\hippoglyph\\hippoglyph\\EMNIST\\bin"
# image = cv2.imread("c:\\deleteme\\hippoglyph\\hippoglyph\\diagnostics\\diagnostic_image.jpg")
bindir = "/home/shimpe/development/python/hippoglyph/EMNIST/bin"
image = cv2.imread("/home/shimpe/development/python/hippoglyph/diagnostics/diagnostic_image.jpg")
# cv2.imshow("original", image)
image = unwarp(image)
# cv2.imshow("unwarped", image)
result_norm_planes = remove_shadow(image)
image = cv2.merge(result_norm_planes)
# cv2.imshow("shadow removal", image);
image = threshold_image(image)
# cv2.imshow("threshold", image)
# image = denoise_image(image)
# cv2.imshow("denoise", image)
all_letters = segment_letters(image)
result = order_letters(all_letters)
cv2.waitKey(0)
cv2.destroyAllWindows()
def remove_shadow(image):
rgb_planes = cv2.split(image)
result_planes = []
result_norm_planes = []
for plane in rgb_planes:
dilated_img = cv2.dilate(plane, np.ones((7, 7), np.uint8))
bg_img = cv2.medianBlur(dilated_img, 21)
diff_img = 255 - cv2.absdiff(plane, bg_img)
norm_img = cv2.normalize(diff_img, diff_img, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8UC1)
# result_planes.append(diff_img)
result_norm_planes.append(norm_img)
image = cv2.merge(result_norm_planes)
# image = cv2.merge(result_planes)
return image
def threshold_image(image):
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY);
image = cv2.bilateralFilter(image, 5, 21, 21)
ret3, image = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# image = cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)
# image = cv2.copyMakeBorder(image, 6, 6, 6, 6, cv2.BORDER_CONSTANT, value=(255, 255, 255))
return image
def denoise_image(image):
morph = 255 - image
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (2, 2))
image = cv2.morphologyEx(morph, cv2.MORPH_CLOSE, kernel)
image = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel)
image = 255 - image
return image
def order_letters(all_letters):
rectangles = []
for i, l in enumerate(all_letters):
x = l[1][0]
y = l[1][1]
w = l[1][2]
h = l[1][3]
rectangles.append([x, y, w, h, i])
words, id_to_rect, forbidden, ordering = cluster_letters_to_words(rectangles)
result = []
for order in ordering:
word = words[order]
for letter in word:
result.append(all_letters[int(letter)])
result.append(None)
visualization = [r[0] for r in result if r is not None]
debug_display("found letters", visualization)
return result
def segment_letters(image):
height, width = image.shape
all_letters = []
while True:
mask = np.zeros((height + 2, width + 2), np.uint8)
# cv2.imshow("mask before", mask)
indexzero = np.argwhere(image == 0)
if indexzero.size == 0:
break
indexzero = indexzero[0]
seed = (indexzero[1], indexzero[0])
floodflags = 4 # connectivity of 4
floodflags |= (255 << 8)
num, im, mask, rect = cv2.floodFill(image, mask, seed, (255, 0, 0), (0,) * 3, (0,) * 3, floodflags)
# cv2.imshow("image", image)
# cv2.imshow("mask", mask)
# cv2.waitKey(0)
mask = 255 - mask
edged = cv2.Canny(mask, 0, 100)
image3, contours3, hierarchy3 = cv2.findContours(edged, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = []
found = set({})
for c in contours3:
M = cv2.moments(c)
if M['m00']:
cx = int(int(M['m10'] / M['m00']))
cy = int(int(M['m01'] / M['m00']))
if (cx, cy) not in found:
found.add((cx, cy))
cnts.append((cy, cx, c))
letters = contours_to_boundingboxes(cnts)
if letters:
final_letters, boxed_image = remove_doubles_and_overlaps_for_single_letter(mask, letters)
# cv2.imshow("boxed", boxed_image)
# cv2.waitKey(0)
if final_letters:
letter = cutout_grayscale_letters(mask, final_letters)
if letter:
try:
letter_image, pos = letter[0][0], letter[0][1]
all_letters.append((letter_image, pos))
except IndexError as e:
print(e, letter)
return all_letters
if __name__ == "__main__":
main2()