-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathfibinet.py
66 lines (51 loc) · 3.37 KB
/
fibinet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# -*- coding:utf-8 -*-
"""
Author:
Weichen Shen, weichenswc@163.com
Reference:
[1] Huang T, Zhang Z, Zhang J. FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction[J]. arXiv preprint arXiv:1905.09433, 2019.
"""
from tensorflow.python.keras.models import Model
from tensorflow.python.keras.layers import Dense, Flatten
from ..feature_column import build_input_features, get_linear_logit, input_from_feature_columns
from ..layers.core import PredictionLayer, DNN
from ..layers.interaction import SENETLayer, BilinearInteraction
from ..layers.utils import concat_func, add_func, combined_dnn_input
def FiBiNET(linear_feature_columns, dnn_feature_columns, bilinear_type='interaction', reduction_ratio=3,
dnn_hidden_units=(256, 128, 64), l2_reg_linear=1e-5,
l2_reg_embedding=1e-5, l2_reg_dnn=0, seed=1024, dnn_dropout=0, dnn_activation='relu',
task='binary'):
"""Instantiates the Feature Importance and Bilinear feature Interaction NETwork architecture.
:param linear_feature_columns: An iterable containing all the features used by linear part of the model.
:param dnn_feature_columns: An iterable containing all the features used by deep part of the model.
:param bilinear_type: str,bilinear function type used in Bilinear Interaction Layer,can be ``'all'`` , ``'each'`` or ``'interaction'``
:param reduction_ratio: integer in [1,inf), reduction ratio used in SENET Layer
:param dnn_hidden_units: list,list of positive integer or empty list, the layer number and units in each layer of DNN
:param l2_reg_linear: float. L2 regularizer strength applied to wide part
:param l2_reg_embedding: float. L2 regularizer strength applied to embedding vector
:param l2_reg_dnn: float. L2 regularizer strength applied to DNN
:param seed: integer ,to use as random seed.
:param dnn_dropout: float in [0,1), the probability we will drop out a given DNN coordinate.
:param dnn_activation: Activation function to use in DNN
:param task: str, ``"binary"`` for binary logloss or ``"regression"`` for regression loss
:return: A Keras model instance.
"""
features = build_input_features(linear_feature_columns + dnn_feature_columns)
inputs_list = list(features.values())
linear_logit = get_linear_logit(features, linear_feature_columns, seed=seed, prefix='linear',
l2_reg=l2_reg_linear)
sparse_embedding_list, dense_value_list = input_from_feature_columns(features, dnn_feature_columns,
l2_reg_embedding, seed)
senet_embedding_list = SENETLayer(
reduction_ratio, seed)(sparse_embedding_list)
senet_bilinear_out = BilinearInteraction(
bilinear_type=bilinear_type, seed=seed)(senet_embedding_list)
bilinear_out = BilinearInteraction(
bilinear_type=bilinear_type, seed=seed)(sparse_embedding_list)
dnn_input = combined_dnn_input([Flatten()(concat_func([senet_bilinear_out, bilinear_out]))], dense_value_list)
dnn_out = DNN(dnn_hidden_units, dnn_activation, l2_reg_dnn, dnn_dropout, False, seed=seed)(dnn_input)
dnn_logit = Dense(1, use_bias=False)(dnn_out)
final_logit = add_func([linear_logit, dnn_logit])
output = PredictionLayer(task)(final_logit)
model = Model(inputs=inputs_list, outputs=output)
return model