From 2471f029b0f94839ad1327f1d88985bc4bd9c9c3 Mon Sep 17 00:00:00 2001 From: shemian29 Date: Thu, 3 Nov 2022 16:54:45 -0500 Subject: [PATCH] Simplify code in Main notebook, no change in calculations --- Notebooks/Main.ipynb | 590 +++++++++++++++++++++++++++++++++++++++---- 1 file changed, 538 insertions(+), 52 deletions(-) diff --git a/Notebooks/Main.ipynb b/Notebooks/Main.ipynb index 866e8e7..3eae483 100644 --- a/Notebooks/Main.ipynb +++ b/Notebooks/Main.ipynb @@ -10,9 +10,13 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 5, "id": "be525609-57a7-4921-b56c-a80cef880c2e", - "metadata": {}, + "metadata": { + "pycharm": { + "is_executing": true + } + }, "outputs": [], "source": [ "import JJArray as jja\n", @@ -33,18 +37,19 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 72, "id": "ae19ed05-a2e5-4484-8163-105907146e4f", "metadata": {}, "outputs": [], "source": [ - "N = 3\n", - "Ncut = 2\n", + "N = 4\n", + "MuliCharge_ncut = 3*N\n", + "Ncut = int(MuliCharge_ncut/N)\n", "\n", - "EC = np.full((N), 0.1)\n", + "EC = np.array([0.1,1,1,0.1])#np.full((N), 2.5)\n", "EJ = np.full((N), 0.1)\n", "EJb = 10\n", - "ECb = 0.5\n", + "ECb = 2.5\n", "phi = 0.\n", "\n", "H = jja.H_array(phi, N , Ncut, EJ, EC, EJb, ECb)" @@ -68,7 +73,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 73, "id": "a16885e3-804a-4a41-9cec-98b28a708d08", "metadata": {}, "outputs": [ @@ -76,18 +81,18 @@ "name": "stdout", "output_type": "stream", "text": [ - "Full Hilbert space dimension = 125\n" + "Full Hilbert space dimension = 2401\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "845dbfb8d41d462bbfae143dd4c453a3", + "model_id": "a8e7a6f7e3f24e62ac872a9f093c07d0", "version_major": 2, "version_minor": 0 }, "text/plain": [ - " 0%| | 0/3 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ @@ -195,20 +233,37 @@ " \n", " H = jja.H_array(ph, N , Ncut, EJ, EC, EJb, ECb)\n", " evals, evecs, symmetric_data = jja.SortedDiagonalization(H,V,10)\n", - " [scan[k].append(symmetric_data[k][0]) for k in range(N)] " + " [scan[k].append(symmetric_data[k][0]-symmetric_data[0][0][0]) for k in range(N)] \n", + " # plt.imshow([[ME(symmetric_data[0][1][i],jja.Op(CosPhi,N,0),symmetric_data[1][1][j]) for i in range(10)] for j in range(10)])\n", + " # plt.show()\n", + " \n", + " \n", + " bs = jja.cartesian([np.arange(-Ncut,Ncut+1) for r in range(N)])\n", + " chrgs = np.array([np.sum(bs[r]) for r in range(len(bs))])\n", + "\n", + " state = evecs[0]\n", + " ChDist = np.array([np.sum((np.abs(state)[np.where(chrgs==r)[0]])**2) for r in range(-N*Ncut,N*Ncut+1)])\n", + " plt.plot(np.unique(chrgs),ChDist,'r.-')\n", + "\n", + " state = evecs[1]\n", + " ChDist = np.array([np.sum((np.abs(state)[np.where(chrgs==r)[0]])**2) for r in range(-N*Ncut,N*Ncut+1)])\n", + " plt.plot(np.unique(chrgs),ChDist,'.-')\n", + "\n", + " plt.grid()\n", + " # plt.show()" ] }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 69, "id": "883a7430-7254-4171-ba4a-3c74ca800eb2", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA1vUlEQVR4nO3de3Bb5YH//8/RxXIutkmtJk4aN4btQgLTDWnSBtJMw1BK2m8gGZi23wBDyG5gy2byWy47ocm2mYQyJdAL221YLqWesLT8lt0f4NQtO+QyuQBLtySEZcqlDlsC5OYFF1ZySCxLOs/vjyPJkiNfZFuW/Oj9mjkjHfkc+TnK+cQfPZJsxxhjBAAAgDHPV+oBAAAAYGRQ7AAAACxBsQMAALAExQ4AAMASFDsAAABLUOwAAAAsQbEDAACwBMUOAADAEoFSD2Ckua6r48ePq6amRo7jlHo4GKOMMers7NS0adPk81XW8x8yhOEiP+QHwzOcDFlX7I4fP67GxsZSDwOWOHLkiKZPn17qYYwqMoSRQn6A4RlKhqwrdjU1NZK8B6O2trbEo8FYFY1G1djYmDmfKgkZwnCRH/KD4RlOhqwrdump79raWkKFYavEl1LIEEYK+SE/GJ6hZKiy3vwAAABgMYodAACAJSh2AAAAlqDYAQAAWIJiBwAAYAmKHQAAgCUodgAAAJag2AEAAFiCYgcAAGAJih0AAIAlKHYAAACWoNgBAABYgmIHAABgCYodAACAJSh2AAAAlqDYAQAAWIJiBwAAYImiF7tnnnlG8+fP17hx4xQOh3X11VcPuM+bb76ppUuXqq6uTjU1Nbrooov03nvvFXuoQNkhP8DQkR9UokAx7/ypp57STTfdpLvvvluXXnqpjDH6/e9/3+8+f/zjH7Vw4UKtWrVKd955p+rq6vTmm2+qurq6mEMFyg75AYaO/KBSOcYYU4w7TiQSampq0p133qlVq1YNer/ly5crGAzqF7/4xZC+bzQaVV1dnSKRiGpra4d0H0Cpz6NS5Ucq/bFj7Cv1OUR+MNYN5zwq2kuxBw8e1LFjx+Tz+TRnzhxNnTpVX/va1/T666/3uY/runrmmWd07rnnavHixZo8ebLmz5+vbdu29blPLBZTNBrNWYCxbrTyI5Eh2If8oJIVrdi9/fbbkqRNmzbpu9/9rn7zm99o0qRJWrRokT788MO8+7z//vs6efKk7rnnHn31q1/Vjh07dNVVV+nqq6/Wvn378u6zefNm1dXVZZbGxsZiHRIwakYrPxIZgn3IDyqaKdDGjRuNpH6X/fv3m8cff9xIMg8//HBm366uLhMOh81DDz2U976PHTtmJJlrrrkm5/Yrr7zSLF++PO8+XV1dJhKJZJYjR44YSSYSiRR6aEBGJBIpynlUbvlJ3y8ZwkgiP+QHwzOcDBX84Yk1a9Zo+fLl/W7T1NSkzs5OSdL555+fuT0UCumcc87p8xNG4XBYgUAgZx9JmjVrll544YW8+4RCIYVCoUIOASiZcstP+n7JEMYC8gMMrOBiFw6HFQ6HB9xu7ty5CoVCamtr08KFCyVJ8Xhc77zzjmbMmJF3n6qqKn3+859XW1tbzu2HDh3qcx9gLCE/wNCRH2AQijCDmHHLLbeYT33qU2b79u3mD3/4g1m1apWZPHmy+fDDDzPbnHfeeebpp5/OrD/99NMmGAyan/3sZ+att94yW7ZsMX6/3zz//POD+p7FegkAlaUczqNS5MeY8jh2jG3lcA6RH4xlwzmPilrsuru7zd/93d+ZyZMnm5qaGnPZZZeZ1157LXcAktm6dWvObc3NzeYzn/mMqa6uNrNnzzbbtm0b9PckVBgJ5XAelSI/xpTHsWNsK4dziPxgLBvOeVS032NXKvwOIYyESj6PKvnYMTIq+Ryq5GPHyCnL32MHAACA0UWxAwAAsATFDgAAwBIUOwAAAEtQ7AAAACxBsQMAALAExQ4AAMASFDsAAABLUOwAAAAsQbEDAACwBMUOAADAEhQ7AAAAS1DsAAAALEGxAwAAsATFDgAAwBIUOwAAAEtQ7AAAACxBsQMAALAExQ4AAMASFDsAAABLUOwAAAAsQbEDAACwBMUOAADAEhQ7AAAAS1DsAAAALEGxAwAAsATFDgAAwBIUOwAAAEtQ7AAAACxBsQMAALAExQ4AAMASFDsAAABLUOwAAAAsQbEDAACwBMUOAADAEhQ7AAAAS1DsAAAALEGxAwAAsETRi90zzzyj+fPna9y4cQqHw7r66qv73f7kyZNas2aNpk+frnHjxmnWrFl68MEHiz1MoCyRH2DoyA8qUaCYd/7UU0/ppptu0t13361LL71Uxhj9/ve/73ef2267TXv27NEvf/lLNTU1aceOHVq9erWmTZumZcuWFXO4QFkhP8DQkR9ULFMk8XjcfOpTnzI///nPC9rvggsuMN/73vdybvvc5z5nvvvd7w5q/0gkYiSZSCRS0PcFspX6PCpVfowp/bFj7Cv1OUR+MNYN5zwq2kuxBw8e1LFjx+Tz+TRnzhxNnTpVX/va1/T666/3u9/ChQvV2tqqY8eOyRijPXv26NChQ1q8eHHe7WOxmKLRaM4CjHWjlR+JDME+5AcVbaRbZtq//Mu/GEnm05/+tHnyySfNgQMHzDXXXGPq6+vNn/70pz73i8ViZsWKFUaSCQQCpqqqyjz22GN9br9x40Yj6YyFZ0sYjlI/6x6t/BhDhjDyyA/5wfAMJ0MFF7u+TuLsZf/+/ebxxx83kszDDz+c2berq8uEw2Hz0EMP9Xn/P/zhD825555rWltbzauvvmq2bNliJk6caHbu3Jl3+66uLhOJRDLLkSNHCBWGrVg/mMotP+n7JUMYSeSH/GB4hpOhgj88sWbNGi1fvrzfbZqamtTZ2SlJOv/88zO3h0IhnXPOOXrvvffy7nf69Gn9/d//vVpaWrRkyRJJ0l/8xV/ov/7rv/SjH/1Il1122Rn7hEIhhUKhQg8DKIlyy0/6fskQxgLyAwys4GIXDocVDocH3G7u3LkKhUJqa2vTwoULJUnxeFzvvPOOZsyYkXefeDyueDwuny/3rX9+v1+u6xY6VKDskB9g6MgPMLCifXiitrZWN998szZu3KgdO3aora1Nf/M3fyNJ+sY3vpHZbubMmWppacnss2jRIq1du1Z79+7V4cOH9eijj+qxxx7TVVddVayhAmWH/ABDR35QyYr6e+x++MMfKhAI6Prrr9fp06c1f/587d69W5MmTcps09bWpkgkkll/4okntH79el133XX68MMPNWPGDH3/+9/XzTffXMyhAmWH/ABDR35QqRxjjCn1IEZSNBpVXV2dIpGIamtrSz0cjFGVfB5V8rFjZFTyOVTJx46RM5zziL8VCwAAYAmKHQAAgCUodgAAAJag2AEAAFiCYgcAAGAJih0AAIAlKHYAAACWoNgBAABYgmIHAABgCYodAACAJSh2AAAAlqDYAQAAWIJiBwAAYAmKHQAAgCUodgAAAJag2AEAAFiCYgcAAGAJih0AAIAlKHYAAACWoNgBAABYgmIHAABgCYodAACAJSh2AAAAlqDYAQAAWIJiBwAAYAmKHQAAgCUodgAAAJag2AEAAFiCYgcAAGAJih0AAIAlKHYAAACWoNgBAABYgmIHAABgCYodAACAJSh2AAAAlqDYAQAAWIJiBwAAYImiFbu9e/fKcZy8y/79+/vczxijTZs2adq0aRo3bpwuueQSvf7668UaJlCWyA8wdOQHlaxoxW7BggU6ceJEznLjjTeqqalJ8+bN63O/H/zgB7rvvvt0//33a//+/WpoaNBXvvIVdXZ2FmuoQNkhP8DQkR9UNDNKuru7zeTJk833vve9PrdxXdc0NDSYe+65J3NbV1eXqaurMw899NCgvk8kEjGSTCQSGfaYUbnK7TwarfwYU37HjrGn3M4h8oOxZjjn0ai9x661tVUdHR1auXJln9scPnxY7e3tuvzyyzO3hUIhLVq0SC+++OIojBIoT+QHGDryg0oSGK1v1NzcrMWLF6uxsbHPbdrb2yVJU6ZMybl9ypQpevfdd/PuE4vFFIvFMuvRaHQERguUl2LlRyJDsB/5QSUpeMZu06ZNfb4pNb0cOHAgZ5+jR49q+/btWrVq1aC+h+M4OevGmDNuS9u8ebPq6uoyS3/BBUqt3PIjkSGMHeQHGFjBM3Zr1qzR8uXL+92mqakpZ33r1q2qr6/X0qVL+92voaFBkvfMaerUqZnb33///TOeRaWtX79et99+e2Y9Go0SLJStcsuPRIYwdpAfYGAFF7twOKxwODzo7Y0x2rp1q1asWKFgMNjvtmeffbYaGhq0c+dOzZkzR5LU3d2tffv26d577827TygUUigUGvwBACVUbvmRyBDGDvIDDKzoH57YvXu3Dh8+3Oc0+MyZM9XS0iLJmwK/9dZbdffdd6ulpUWvvfaaVq5cqfHjx+vaa68t9lCBskN+gKEjP6hERf/wRHNzsxYsWKBZs2bl/XpbW5sikUhm/Y477tDp06e1evVqffTRR5o/f7527NihmpqaYg8VKDvkBxg68oNK5BhjTKkHMZKi0ajq6uoUiURUW1tb6uFgjKrk86iSjx0jo5LPoUo+doyc4ZxH/K1YAAAAS1DsAAAALEGxAwAAsATFDgAAwBIUOwAAAEtQ7AAAACxBsQMAALAExQ4AAMASFDsAAABLUOwAAAAsQbEDAACwBMUOAADAEhQ7AAAAS1DsAAAALEGxAwAAsATFDgAAwBIUOwAAAEtQ7AAAACxBsQMAALAExQ4AAMASFDsAAABLUOwAAAAsQbEDAACwBMUOAADAEhQ7AAAASwRKPQAUlzFGCZNQ0k3KyPS5nd/xK+ALyOfQ9QEAGKsodmUilowpGosq2h1VZ3enOrs79XH8Y52Mn8xcnuz2rp9OnFZXokunk95lV6JLXckunU6cVjwZV8JNKGESirve9UKkC156CfqCCvlDGhcYp2p/taoD3pJenxCcoIlVE73LYM/lxKqJqqmqUW1VrWqqajQxOFGO4xTp0QMAABLFbsQYY9SV7FJnd6eisag6452ZohaJRRTtzr0eiUW8bbujisai6na7S30IkqSkSSqZTCqWjI3o/focn2qqalQTrFFtqFa1VbWqC9XlXKavZxfC2lCtJgYnMpMIAMAgVFSxe/t/31bcjcs1rlzjKmmSOZfxZFxdyS7FkjF1JbzL9PXTidOZ2bP0cjJ+UqfipzKzbHE3PqzxZZefmqqavDNhE4ITND44Pnf2zD9O44LjFPKHVOWrOmPGLX3dUd8zZkmTVMLtmeVLL3HXe0zSM4PZs4SnE6dzHouP4x9nZhU7452Zktvtdss1riKxiCKxiHSysMfFkaOJVRNVW1Wb8zikl/R6KBBSyB9Stb9aVf4qVQeqFfJ7t/kdv/w+v3yOT34n97JhQoNqqmqG9W8HAEA5qKhi941ff6PoM2PpcpaZccozM5U9Q5WevaqtqtX44HgrZ6Z6v8zce+ayr5nMzu5OxZIxGZnMy9PF8MMv/VBfPfurRblvAABGU0UVu0+M+4S6k91nzNikZ3KCvqCq/dU5Mz+hgHc5LjAuMzs0Pjg+8z6y8YHxOUVuQnAC7yXrJeQP6ZPjP6lPjv9kwfvGkrHMzF+0O6pT8VM5M6fpWdOT8ZM5M61dyS7FErHMrOsZM7Ruz3rIHyrCUQMAMPoqqtjt/PrOUg8BBQr5QwqNCyk8LlzqoQAAUPbse90PAACgQlHsAAAALEGxAwAAsATFDgAAwBIUOwAAAEtQ7AAAACxRtGK3d+9eOY6Td9m/f3/efeLxuL797W/rs5/9rCZMmKBp06ZpxYoVOn78eLGGCZQl8gMMHflBJStasVuwYIFOnDiRs9x4441qamrSvHnz8u5z6tQpHTx4UBs2bNDBgwf19NNP69ChQ1q6dGmxhgmUJfIDDB35QSUr2i8orqqqUkNDQ2Y9Ho+rtbVVa9as6fMvM9TV1WnnztxfIrxlyxZ94Qtf0HvvvadPf/rTxRouUFbIDzB05AeVbNT+8kRra6s6Ojq0cuXKgvaLRCJyHEdnnXVWUcYFjAVlkZ/f/Ux65zlJqR+MjuNdT/+gdHx5Fid33ReQHL/k86fW/an1QGrpfd0v+YI9t/kDWV8P5m7vz17Pvu7P+r6BXt/blzUef2q8I/gnAY1JLUnJTXqXxk1dT126idTXEz3rmct4z/VkPOtr6esJKZnouZ6zb571zDjcnvFkj8u4qfG6Zy7p41HqmLwbpMb50oL/Z+QesyIoi/wcf0V6/sepFacnP1JWlgbIUOb89Uu+rHM3OzP58uQP9rptkJnKyWEgK0ep752TYX/PeEeSMb3OVffM8zj7fDdu7npOPuK52yez1+N95Cchue4gMtRXfpK9cmN6jit9/f/+ckQfslErds3NzVq8eLEaGxsHvU9XV5fWrVuna6+9VrW1tXm3icViisVimfVoNDrssQLlplj5kQrI0PGD0pu/HvT3H9Mcn3p+0GYX2Hw/tEzuf9zGTV13R3PEpeP4Sz2CAZVFfjr/p3Lyk52dTJb6yo+UNzvZxQcFKbjYbdq0SXfeeWe/2+zfvz/nfQxHjx7V9u3b9W//9m+D/j7xeFzLly+X67p64IEH+txu8+bNA44HKBfllh+pgAzNvkaanhqXMbmX2f8Z55vtyTdDlHnWm2+mKt+MU+/Zq3juM+neXzfJXl9PPdsejMwM1SC3H44zZlhSMyCZWZbsWciAN1uSvt7nLGXvGZdA7sxKzixL9mxLPzNG3mBzZ2QcR5p0dvEfo5QxnZ8p50tL7lPujKfOnM3Jmx03T3ayzm+TzJOXpIY2Q5XMyk+e+xuU1Cz1aPSynFcCep3v+TLhD/TKV/bXgt79pb+Wb0bUF8gzU5mevewjQ9nFtnd+5Hj/9iM40+kYYwp66Ds6OtTR0dHvNk1NTaqurs6s33XXXdqyZYuOHTumYDA44PeIx+P65je/qbffflu7d+9WfX19n9vme7bU2NioSCTS77MsoD/RaFR1dXUjfh6VW36kCstQunie8ZJOsucln6HOHuT8J5410+dLv8Tb+4dAkV66KgPkx9L8SD0lc6CXIns/2RtMfvqa6cv7km9WmbLQcDJU8IxdOBxWOBwe9PbGGG3dulUrVqwoKFRvvfWW9uzZM2CoQqGQQqHQoMcDlFK55UeqsAxlFyyMOeSnDPh84lfglrei/+vs3r1bhw8f1qpVq/J+febMmWppaZEkJRIJff3rX9eBAwf0+OOPK5lMqr29Xe3t7eru7i72UIGyQ36AoSM/qERF//BEc3OzFixYoFmzZuX9eltbmyKRiCTvvRCtra2SpAsvvDBnuz179uiSSy4p5lCBskN+gKEjP6hEBb/HrtwV670dqCyVfB5V8rFjZFTyOVTJx46RM5zziBfKAQAALEGxAwAAsATFDgAAwBIUOwAAAEtQ7AAAACxBsQMAALAExQ4AAMASFDsAAABLUOwAAAAsQbEDAACwBMUOAADAEhQ7AAAAS1DsAAAALEGxAwAAsATFDgAAwBIUOwAAAEsESj0AABiMpGsUT7pKuEbxhHeZcF0lklm3J731hGuUSLrePq5R0nUVTxolXe9rrutdT7pGSeNdusa73TWSa4yMkYx61gficxz5HMmRI8fpWff5HPkcR36fI7/jyOdzFPD1XPp9joJ+R36fT8HUesDvU8DnKOB3FExdD/p9qa85Cvp8OV/z+xw5jjMK/woYq1zXKJ7KSyLZcz2eykkilZH019J5S7omJ1OJVFZysmR6MuUayUgyxmRy5Kay1B9Hqbw4Xn4cp2fdl8qO3+etB/w9mQr4erISSOWiJ1e+zO1Bv5erYDpfWTkKWJYfih2AQfl/f/ee9r/zoYwxqf+4vdvT/4mnLzP/uRvvMtnrB0Eya0mkSlci/cMjmS5sWddTP2gG0a0qWjDrB1u68AV6lUS/r6cIppf0erqIpkti9nVHylxK8n7wpm67sPEs3bCgqXQHPka8fjyinz9/WCZ1IqczlJ0fZeUl/YTCzXrikUimLnvlKJ6VlUSmlHkZiqey5JKffgWynjT5s8qgP/tJVTpHWaUynSOvfKaLaU8J9aXCkp0hp9f6j785e0SLJcUOwKAcePdDtbxyrNTDyJGvzGTPbAV8PV/3+7z/tH0+KeDzZf4j9vt88vt6Sozf6Zlxy/znm/qPuC+ZH9KpH9DpmYqkMZmym3SlpOsqabzZk4TrynWVmR1JpGYU0zMpOTOUmZlIb1Yln3jSKJ5MSvEiPND96E64FLtBaI90lV1+zpzpSs9spQqO78xik85W9ix0drnpmblWptT4sp4U5NNTck0mR+mZv8zsempWMGfGMOndnj1Dn77eM0PvDqrkpp9QdsktzoPdj/v+74Ujen8UOwCDsnT2NM1qqFX2E8veszjZ5Sj7Zcj07E/2M9zslyOzf8DkvoSSevmElx9zpEtfuvDFe70knS6BuZe9Z0qzX4p2lXR1xsvR6R+gvWdn04yRzg5PKM2DMMb8+eQafef/zJKkTIbS5296Fif9sqPPUSpDPU8y0k9OMrNFvV6OzJ5d6nk5MpWdzKxt7nql5iffy9KZLCV7Zjyzn2ilc5RdMJO9lnRm0q9UpJ/U9Z6dTUuX2ZFGsQMwKJecN1mXnDe51MOAlCrHflUH/aUeCgbp0/XjddOXzin1MCDvCWfI51fI0gbEp2IBAAAsQbEDAACwhKUTkX3o/B/J508tQckflHwBbx32M0ZKxiU3IblxyU1669W1UnBcqUcHAMCwVVax++kcKf5xni84XskLVEtVE6VQjRRKXVZNlEK1UnWdNKFeGl8vjQ9LE8I918dNknxMfhZd7KR0qkP6+E/SqT+lrnd4109/KMU6vW1inVL3SSkW9dbjp7wCZ5L57/ebj0nnLxvdYwEAoAgqq9j1+ekTIyW7vSUWlToLvFvHL02cItVMkSY2eJc1U1O3TZVqp0o107wiSAE8U+yk1HlCih6XOtu96yf/J3W9XTrZ7s225i3lw+V4M3cAAFigsordd05IruvN3CTjuS/HuQkpflrq7mPW5/RHqVmi1PJxhzdj1BXx7q/zuLf0xxfMKnpTpdppUk2Ddz37MlQzOo9HsSW6swpauqydkKInvMcqesJbj0UHf5+B6tSMaWq2dHy9N3s67hOpmdbs2dbUetX4Xi+9B1LXgxRtAIBVKqvYSakf5D7vB/tISMaljz9IzSylikvn//TMMqULzMcfeEUy8p639Cc4QZo4WZrwydQSzr0+/hPeS8PVZ3mXoVopUDUyx9MX1/VKb1ekZzn9v165PfmBd3yZpUP6+H2vAA9WVU1P4a2Zmn/2c+IUr7QBAIC8Kq/YjTR/0Jt5q53W/3bJeM/MVfR4qgCe6LmtM1UEYxHvJcePDnvLYAXHewWvarwUGCcFQt7sVrDauwyEvJeM8zJSIpZaunqWeOoyFpW6our7pex+pGcpaxqyZiWneC9Np1+irp1qzywlAAAlRLEbLf6gdFajt/Sn+2Ov5J0xA5Z1/fT/9syaxSLefvFT3lJsgXGp2cLUMiHca0YxPasY9kocHywBAGDUUOzKTdUEqf7PvGUw3KT3fsCuiNT1v6lZttPe7Fs8dZleN/38DTx/lfcrP9IzfeklWC2F0kWu1vs6AAAoSxS7sc7nl8ad5S2aUeLBAACAUuI1MgAAAEtQ7AAAACxBsQMAALAExQ4AAMASFDsAAABLUOwAAAAsUbRit3fvXjmOk3fZv3//oO7jW9/6lhzH0U9+8pNiDRMoS+QHGDryg0pWtN9jt2DBAp04cSLntg0bNmjXrl2aN2/egPtv27ZNv/vd7zRt2gB/qguwEPkBho78oJIVrdhVVVWpoaEhsx6Px9Xa2qo1a9bIcZx+9z127JjWrFmj7du3a8mSJcUaIlC2yA8wdOQHlWzU/vJEa2urOjo6tHLlyn63c11X119/vdauXasLLrhgwPuNxWKKxWKZ9Wg0OtyhAmWnWPmRyBDsR35QSUbtwxPNzc1avHixGhsb+93u3nvvVSAQ0N/+7d8O6n43b96surq6zDLQ/QNjUbHyI5Eh2I/8oJIUXOw2bdrU55tS08uBAwdy9jl69Ki2b9+uVatW9XvfL7/8sv7xH/9Rjz766IDT5Wnr169XJBLJLEeOHCn0kIBRU275kcgQxg7yAwzMMcaYQnbo6OhQR0dHv9s0NTWpuro6s37XXXdpy5YtOnbsmILBYJ/7/eQnP9Htt98un6+nbyaTSfl8PjU2Nuqdd94ZcHzRaFR1dXWKRCKqra0d+ICAPIp1HpV7fiQyhOEjP+QHwzOc86jg99iFw2GFw+FBb2+M0datW7VixYp+QyVJ119/vS677LKc2xYvXqzrr79ef/mXf1noUIGyQ36AoSM/wMCK/uGJ3bt36/Dhw31Og8+cOVObN2/WVVddpfr6etXX1+d8PRgMqqGhQeedd16xhwqUHfIDDB35QSUq+ocnmpubtWDBAs2aNSvv19va2hSJRIo9DGBMIj/A0JEfVKKC32NX7nh/A0ZCJZ9HlXzsGBmVfA5V8rFj5AznPOJvxQIAAFiCYgcAAGAJih0AAIAlKHYAAACWoNgBAABYgmIHAABgCYodAACAJSh2AAAAlqDYAQAAWIJiBwAAYAmKHQAAgCUodgAAAJag2AEAAFiCYgcAAGAJih0AAIAlKHYAAACWoNgBAABYgmIHAABgCYodAACAJSh2AAAAlqDYAQAAWIJiBwAAYAmKHQAAgCUodgAAAJag2AEAAFiCYgcAAGAJih0AAIAlKHYAAACWoNgBAABYgmIHAABgCYodAACAJSh2AAAAlqDYAQAAWIJiBwAAYAmKHQAAgCUodgAAAJag2AEAAFiiaMVu7969chwn77J///5+933zzTe1dOlS1dXVqaamRhdddJHee++9Yg0VKDvkBxg68oNKFijWHS9YsEAnTpzIuW3Dhg3atWuX5s2b1+d+f/zjH7Vw4UKtWrVKd955p+rq6vTmm2+qurq6WEMFyg75AYaO/KCSOcYYMxrfKB6Pa/r06VqzZo02bNjQ53bLly9XMBjUL37xiyF9n2g0qrq6OkUiEdXW1g51uKhw5XYejVZ+pPI7dow95XYOkR+MNcM5j0btPXatra3q6OjQypUr+9zGdV0988wzOvfcc7V48WJNnjxZ8+fP17Zt20ZrmEBZIj/A0JEfVJJRK3bNzc1avHixGhsb+9zm/fff18mTJ3XPPffoq1/9qnbs2KGrrrpKV199tfbt25d3n1gspmg0mrMAtilWfiQyBPuRH1QUU6CNGzcaSf0u+/fvz9nnyJEjxufzmSeffLLf+z527JiRZK655pqc26+88kqzfPnygsYTiUQKPTQgIxKJFOU8Krf89DcmMoShIj/kB8MznAwV/OGJNWvWaPny5f1u09TUlLO+detW1dfXa+nSpf3uFw6HFQgEdP755+fcPmvWLL3wwgt591m/fr1uv/32zHo0Gu33WRlQSuWWH4kMYewgP8DACi524XBY4XB40NsbY7R161atWLFCwWCw322rqqr0+c9/Xm1tbTm3Hzp0SDNmzMi7TygUUigUGvR4gFIqt/xIZAhjB/kBBlb099jt3r1bhw8f1qpVq/J+febMmWppacmsr127Vv/6r/+qRx55RP/93/+t+++/X7/+9a+1evXqYg8VKDvkBxg68oOKNNKvC/d2zTXXmAULFvT5dUlm69atObc1Nzebz3zmM6a6utrMnj3bbNu2bdDfr1jv7UBlKZfzaLTzY0z5HDvGrnI5h8gPxqrhnEej9nvsRgu/QwgjoZLPo0o+doyMSj6HKvnYMXLGxO+xAwAAQHFR7AAAACxBsQMAALAExQ4AAMASFDsAAABLUOwAAAAsQbEDAACwBMUOAADAEhQ7AAAAS1DsAAAALEGxAwAAsATFDgAAwBIUOwAAAEtQ7AAAACxBsQMAALAExQ4AAMASFDsAAABLUOwAAAAsQbEDAACwBMUOAADAEhQ7AAAAS1DsAAAALEGxAwAAsATFDgAAwBIUOwAAAEtQ7AAAACxBsQMAALAExQ4AAMASFDsAAABLUOwAAAAsQbEDAACwBMUOAADAEhQ7AAAAS1DsAAAALEGxAwAAsATFDgAAwBIUOwAAAEtQ7AAAACxRtGK3d+9eOY6Td9m/f3+f+508eVJr1qzR9OnTNW7cOM2aNUsPPvhgsYYJlCXyAwwd+UElCxTrjhcsWKATJ07k3LZhwwbt2rVL8+bN63O/2267TXv27NEvf/lLNTU1aceOHVq9erWmTZumZcuWFWu4QFkhP8DQkR9UsqLN2FVVVamhoSGz1NfXq7W1VX/1V38lx3H63O+3v/2tbrjhBl1yySVqamrSX//1X2v27Nk6cOBAsYYKlB3yAwwd+UElG7X32LW2tqqjo0MrV67sd7uFCxeqtbVVx44dkzFGe/bs0aFDh7R48eLRGShQhsgPMHTkB5WkaC/F9tbc3KzFixersbGx3+1++tOf6qabbtL06dMVCATk8/n085//XAsXLsy7fSwWUywWy6xHo9ERHTdQDoqVH4kMwX7kB5Wk4Bm7TZs29fmm1PTSe9r66NGj2r59u1atWjXg/f/0pz/Vf/7nf6q1tVUvv/yyfvzjH2v16tXatWtX3u03b96surq6zDJQcIFSKrf8SGQIYwf5AQbmGGNMITt0dHSoo6Oj322amppUXV2dWb/rrru0ZcsWHTt2TMFgsM/9Tp8+rbq6OrW0tGjJkiWZ22+88UYdPXpUzz777Bn75Hu21NjYqEgkotra2kIODciIRqOqq6sb8fOo3PIjkSGMPPJDfjA8w8lQwS/FhsNhhcPhQW9vjNHWrVu1YsWKfkMlSfF4XPF4XD5f7kSi3++X67p59wmFQgqFQoMeD1BK5ZYfiQxh7CA/wMCK/uGJ3bt36/Dhw31Og8+cOVMtLS2SpNraWi1atEhr167V3r17dfjwYT366KN67LHHdNVVVxV7qEDZIT/A0JEfVKKif3iiublZCxYs0KxZs/J+va2tTZFIJLP+xBNPaP369bruuuv04YcfasaMGfr+97+vm2++udhDBcoO+QGGjvygEhX8HrtyV6z3dqCyVPJ5VMnHjpFRyedQJR87Rs5wziP+ViwAAIAlKHYAAACWoNgBAABYgmIHAABgCYodAACAJSh2AAAAlqDYAQAAWIJiBwAAYAmKHQAAgCUodgAAAJag2AEAAFiCYgcAAGAJih0AAIAlKHYAAACWoNgBAABYgmIHAABgCYodAACAJSh2AAAAlgiUegCVwBijeNKoK5FUVzyprm6353rcTV0mFUukridcxVLr3pJULO5d70646k66iidcJVxX3UmjeMJVPOkq7holXVdJV3Jdo6Qxmcuka/odo89x5Pc58jlKXXrrfp+jgM9R0O9TVcCnoN/nrQd8qvJ7SyjoUyjgUyjg9y6DPderg35VB30KBf2qDnjXvdtS1wN+javytnUcZ5T+RQAAsFNFFbvWV48rkXRljOQaIyOvdHnr8gpQ0lXCNUq4XhlKJI0Srqt40qRKVVLdiZ71WKpopYtZLOuyK9FT2gboVZByi2BWMcwui1WpgplZ/D2X6RIaSJVPv89R0O/IlyqqjrwCK0c96z7p802f0PRJ40t9+AAADFtFFbu1/9+riiXcko7BcXTGzFV2oalOzWz1ngWrSl3vKTTeLFrQ71PA76jK78spNLmzbqki08eMmDFGbqrsJt3cWb6k6802xpPeDGE8YbwZw9SSKbd5Zhe92ceeWcnMbXGv+J6OJ5XIarzpGcrI6dH61/Dcf+0cih0AwAoVVewWfias7qSbKjk9szZOat3vOAr4nVQ58qVmf3pmgXrPEAX9jqqyXn7sKWQ9s069X3qs8vOSY7ZE0s2Z2cwUv6zZz+xSGE96X8ueQU1fT7hu1ixretbV29YYSfIKbLrIpmdsPzkxVOJHAQCAkVFRxa555edLPQT0EvD7NNHv08RQRZ2KAAAUBZ+KBQAAsATFDgAAwBIUOwAAAEtQ7AAAACxBsQMAALAExQ4AAMASFDsAAABLUOwAAAAsQbEDAACwBMUOAADAEhQ7AAAAS1DsAAAALEGxAwAAsATFDgAAwBIUOwAAAEsUtdgdOnRIy5YtUzgcVm1trb74xS9qz549/e5jjNGmTZs0bdo0jRs3Tpdccolef/31Yg4TKEvkBxg68oNKVdRit2TJEiUSCe3evVsvv/yyLrzwQl1xxRVqb2/vc58f/OAHuu+++3T//fdr//79amho0Fe+8hV1dnYWc6hA2SE/wNCRH1QsUyQffPCBkWSee+65zG3RaNRIMrt27cq7j+u6pqGhwdxzzz2Z27q6ukxdXZ156KGHBvV9I5GIkWQikcjwDgAVrdTnUanyY0zpjx1jX6nPIfKDsW4451HRZuzq6+s1a9YsPfbYY/r444+VSCT08MMPa8qUKZo7d27efQ4fPqz29nZdfvnlmdtCoZAWLVqkF198Me8+sVhM0Wg0ZwHGutHKj0SGYB/yg0oWKNYdO46jnTt3atmyZaqpqZHP59OUKVP07LPP6qyzzsq7T3qKfMqUKTm3T5kyRe+++27efTZv3qw777xzRMcOlNpo5UciQ7AP+UElK3jGbtOmTXIcp9/lwIEDMsZo9erVmjx5sp5//nm99NJLWrZsma644gqdOHGi3+/hOE7OujHmjNvS1q9fr0gkklmOHDlS6CEBo6bc8iORIYwd5AcYWMEzdmvWrNHy5cv73aapqUm7d+/Wb37zG3300Ueqra2VJD3wwAPauXOn/vmf/1nr1q07Y7+GhgZJ3jOnqVOnZm5///33z3gWlRYKhRQKhQo9DKAkyi0/EhnC2EF+gIEVXOzC4bDC4fCA2506dUqS5PPlTgr6fD65rpt3n7PPPlsNDQ3auXOn5syZI0nq7u7Wvn37dO+99xY6VKDskB9g6MgPMLCifXji4osv1qRJk3TDDTfo1Vdf1aFDh7R27VodPnxYS5YsyWw3c+ZMtbS0SPKmwG+99Vbdfffdamlp0WuvvaaVK1dq/Pjxuvbaa4s1VKDskB9g6MgPKlnRPjwRDof17LPP6jvf+Y4uvfRSxeNxXXDBBfrVr36l2bNnZ7Zra2tTJBLJrN9xxx06ffq0Vq9erY8++kjz58/Xjh07VFNTU6yhAmWH/ABDR35QyRxjjCn1IEZSNBpVXV2dIpFI5r0VQKEq+Tyq5GPHyKjkc6iSjx0jZzjnEX8rFgAAwBIUOwAAAEtQ7AAAACxBsQMAALAExQ4AAMASFDsAAABLUOwAAAAsQbEDAACwBMUOAADAEhQ7AAAAS1DsAAAALEGxAwAAsATFDgAAwBIUOwAAAEtQ7AAAACxBsQMAALAExQ4AAMASFDsAAABLUOwAAAAsQbEDAACwBMUOAADAEhQ7AAAAS1DsAAAALEGxAwAAsATFDgAAwBIUOwAAAEtQ7AAAACxBsQMAALAExQ4AAMASFDsAAABLUOwAAAAsQbEDAACwBMUOAADAEhQ7AAAAS1DsAAAALEGxAwAAsATFDgAAwBIUOwAAAEsUtdgdOnRIy5YtUzgcVm1trb74xS9qz549fW4fj8f17W9/W5/97Gc1YcIETZs2TStWrNDx48eLOUygLJEfYOjIDypVUYvdkiVLlEgktHv3br388su68MILdcUVV6i9vT3v9qdOndLBgwe1YcMGHTx4UE8//bQOHTqkpUuXFnOYQFkiP8DQkR9ULFMkH3zwgZFknnvuucxt0WjUSDK7du0a9P289NJLRpJ59913B7V9JBIxkkwkEil4zEBaqc+jUuXHmNIfO8a+Up9D5Adj3XDOo6LN2NXX12vWrFl67LHH9PHHHyuRSOjhhx/WlClTNHfu3EHfTyQSkeM4Ouuss/J+PRaLKRqN5izAWDda+ZHIEOxDflDRilA0M44ePWrmzp1rHMcxfr/fTJs2zbzyyiuD3v/06dNm7ty55rrrrutzm40bNxpJZyw8W8JwlMOz7tHIjzFkCCOP/JAfDM+oztht2rRJjuP0uxw4cEDGGK1evVqTJ0/W888/r5deeknLli3TFVdcoRMnTgz4feLxuJYvXy7XdfXAAw/0ud369esViUQyy5EjRwo9JGDUlFt+JDKEsYP8AANzjDGmkB06OjrU0dHR7zZNTU36j//4D11++eX66KOPVFtbm/nan//5n2vVqlVat25dn/vH43F985vf1Ntvv63du3ervr5+0OOLRqOqq6tTJBLJ+b5AIYp1HpV7fiQyhOEjP+QHwzOc8yhQ6DcLh8MKh8MDbnfq1ClJks+XOyno8/nkum6f+6VD9dZbb2nPnj0FhwooZ+QHGDryAwysaB+euPjiizVp0iTdcMMNevXVV3Xo0CGtXbtWhw8f1pIlSzLbzZw5Uy0tLZKkRCKhr3/96zpw4IAef/xxJZNJtbe3q729Xd3d3cUaKlB2yA8wdOQHlaxoxS4cDuvZZ5/VyZMndemll2revHl64YUX9Ktf/UqzZ8/ObNfW1qZIJCJJOnr0qFpbW3X06FFdeOGFmjp1amZ58cUXizVUoOyQH2DoyA8qWcHvsSt3vL8BI6GSz6NKPnaMjEo+hyr52DFyhnMe8bdiAQAALEGxAwAAsATFDgAAwBIUOwAAAEsU/Hvsyl36syD8vT4MR/r8seyzRYNChjBc5If8YHiGkyHril1nZ6ckqbGxscQjgQ06OztVV1dX6mGMKjKEkUJ+gOEZSoas+3Unruvq+PHjqqmpkeM4OV+LRqNqbGzUkSNHKvpj6DwOnv4eB2OMOjs7NW3atDN+e73t+soQ500PHgtPX48D+eFnUH94HDzF+hlk3Yydz+fT9OnT+92mtra2ok+mNB4HT1+PQ6XNNKQNlCHOmx48Fp58jwP56RvnjYfHwTPSP4Mq66kUAACAxSh2AAAAlqioYhcKhbRx40aFQqFSD6WkeBw8PA6F4fHqwWPh4XEoDI+Xh8fBU6zHwboPTwAAAFSqipqxAwAAsBnFDgAAwBIUOwAAAEtQ7AAAACxhXbF74IEHdPbZZ6u6ulpz587V888/3+/2+/bt09y5c1VdXa1zzjlHDz300CiNtLgKeRz27t0rx3HOWP7whz+M4ohH3nPPPacrr7xS06ZNk+M42rZt24D72Ho+DBb58ZAf8jNUZMhT6RkqaX6MRZ544gkTDAbNI488Yt544w1zyy23mAkTJph333037/Zvv/22GT9+vLnlllvMG2+8YR555BETDAbNk08+OcojH1mFPg579uwxkkxbW5s5ceJEZkkkEqM88pH17//+7+Y73/mOeeqpp4wk09LS0u/2tp4Pg0V+POTHQ34KR4Y8ZKi0+bGq2H3hC18wN998c85tM2fONOvWrcu7/R133GFmzpyZc9u3vvUtc9FFFxVtjKOh0MchHaqPPvpoFEZXGoMJlq3nw2CRHw/5ORP5GRwy5CFDuUY7P9a8FNvd3a2XX35Zl19+ec7tl19+uV588cW8+/z2t789Y/vFixfrwIEDisfjRRtrMQ3lcUibM2eOpk6dqi9/+cvas2dPMYdZlmw8HwaL/HjIz9DZeD4Uggx5yNDQjOS5YE2x6+joUDKZ1JQpU3JunzJlitrb2/Pu097ennf7RCKhjo6Ooo21mIbyOEydOlU/+9nP9NRTT+npp5/Weeedpy9/+ct67rnnRmPIZcPG82GwyI+H/AydjedDIciQhwwNzUieC4GRHFg5cBwnZ90Yc8ZtA22f7/axppDH4bzzztN5552XWb/44ot15MgR/ehHP9KXvvSloo6z3Nh6PgwW+fGQn6Gx9XwoBBnykKHCjdS5YM2MXTgclt/vP+MZwfvvv39GC05raGjIu30gEFB9fX3RxlpMQ3kc8rnooov01ltvjfTwypqN58NgkR8P+Rk6G8+HQpAhDxkampE8F6wpdlVVVZo7d6527tyZc/vOnTu1YMGCvPtcfPHFZ2y/Y8cOzZs3T8FgsGhjLaahPA75vPLKK5o6depID6+s2Xg+DBb58ZCfobPxfCgEGfKQoaEZ0XOh4I9blLH0R6ybm5vNG2+8YW699VYzYcIE88477xhjjFm3bp25/vrrM9unP1582223mTfeeMM0Nzdb9VHzwT4O//AP/2BaWlrMoUOHzGuvvWbWrVtnJJmnnnqqVIcwIjo7O80rr7xiXnnlFSPJ3HfffeaVV17JfOS+Us6HwSI/HvLjIT+FI0MeMlTa/FhV7Iwx5p/+6Z/MjBkzTFVVlfnc5z5n9u3bl/naDTfcYBYtWpSz/d69e82cOXNMVVWVaWpqMg8++OAoj7g4Cnkc7r33XvNnf/Znprq62kyaNMksXLjQPPPMMyUY9chKf4S+93LDDTcYYyrrfBgs8uMhP+RnqMiQp9IzVMr8OMak3p0HAACAMc2a99gBAABUOoodAACAJSh2AAAAlqDYAQAAWIJiBwAAYAmKHQAAgCUodgAAAJag2AEAAFiCYgcAAGAJih0AAIAlKHYAAACWoNgBAABY4v8HuI4XPOikbZEAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHWCAYAAAARl3+JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAnBUlEQVR4nO3df5CddX0v8M+BJIf82D0Q8mM3ZrOmGERA4hUQEuWHXsmQ6TBArbdKLw2t17lU5E6GsY7BcRI7mnBxytSZVNA6l6nXsWEcClLF2NgmASfSixRqii0NNpC1ZF0I5Ozm10ayz/3DycqyP7Jn9znP2f3u6zVzRs5znuc5H3zePPs+zzlnt5RlWRYAAExqpzV6AAAAxk+pAwBIgFIHAJAApQ4AIAFKHQBAApQ6AIAEKHUAAAlQ6gAAEqDUAQAkQKkDAEhATaXu3nvvjYsuuiiam5ujubk5VqxYEd///vf7H7/llluiVCoNuF1++eW5D83UIG8UTeYokryRt2m1rLx48eK466674m1ve1tERPzVX/1VXH/99fH000/HBRdcEBER1157bdx///3928yYMSPHcZlK5I2iyRxFkjfyVsqyLBvPDubOnRtf+tKX4mMf+1jccsstcfDgwXj44YdzGg8GkjeKJnMUSd4Yj5qu1L3RiRMn4tvf/nYcPnw4VqxY0b98x44dsWDBgjjzzDPjqquuii9+8YuxYMGCYffT29sbvb29/ff7+vri1VdfjbPPPjtKpdJYx6PBsiyLnp6eWLRoUZx22vg/uplX3iJkLkV55y3COY6RTdRznLyladR5y2r005/+NJs9e3Z2+umnZ5VKJfve977X/9iWLVuy7373u9nu3buzRx55JFu+fHl2wQUXZMeOHRt2f+vXr88iwi3RW0dHR60Rq2veZC7t23jzVo/MyVvat4l2jpO3tG+nylvNb78eP3489u3bFwcPHowHH3wwvv71r8fOnTvj/PPPH7Tu/v37o729PbZs2RK/8zu/M+T+3vyqolqtxpIlS6KjoyOam5trGY0JpLu7O9ra2uLgwYNRqVTGvJ+88xYhcynKK28RznGMzkQ9x8lbmkabt5rffp0xY0b/hzovueSSePLJJ+PLX/5yfPWrXx20bmtra7S3t8eePXuG3V+5XI5yuTxo+clvAzG5jfdyf955i5C5lOXx9pJzHLWYaOc4eUvbqfI27g8CZFk24FXBGx04cCA6OjqitbV1vE8DESFvFE/mKJK8MR41Xam78847Y/Xq1dHW1hY9PT2xZcuW2LFjR2zdujUOHToUGzZsiA996EPR2toaL7zwQtx5550xb968uPHGG+s1PwmTN4omcxRJ3shbTaXul7/8Zdx8882xf//+qFQqcdFFF8XWrVvjmmuuiaNHj8bu3bvjG9/4Rhw8eDBaW1vj/e9/fzzwwAPR1NRUr/lJmLxRNJmjSPJG3sb9e+ry1t3dHZVKJarVqvf/J7HJdBwn06wMbTIdw8k0K8ObLMdxsszJyEZ7HP3tVwCABCh1AAAJUOoAABKg1AEAJECpAwBIgFIHAJAApQ4AIAFKHQBAApQ6AIAEKHUAAAlQ6gAAEqDUAQAkQKkDAEiAUgcAkAClDgAgAUodAEAClDoAgAQodQAACVDqAAASoNQBACRAqQMASIBSBwCQAKUOACABSh0AQAKUOgCABCh1AAAJUOoAABKg1AEAJECpAwBIgFIHAJAApQ4AIAFKHQBAApQ6AIAEKHUAAAlQ6gAAEqDUAQAkQKkDAEiAUgcAkAClDgAgAUodAEAClDoAgAQodQAACVDqAAASoNQBACRAqQMASIBSBwCQAKUOACABSh0AQAKUOgCABNRU6u6999646KKLorm5OZqbm2PFihXx/e9/v//xLMtiw4YNsWjRopg5c2ZcffXV8eyzz+Y+NFODvFE0maNI8kbeaip1ixcvjrvuuit+8pOfxE9+8pP4wAc+ENdff31/yO6+++645557YvPmzfHkk09GS0tLXHPNNdHT01OX4UmbvFE0maNI8kbusnE666yzsq9//etZX19f1tLSkt111139jx07diyrVCrZfffdN+r9VavVLCKyarU63tFooHodx7zzVs9ZKU49j6FzHEOZLOc4eUvDaI/jmD9Td+LEidiyZUscPnw4VqxYEXv37o3Ozs5YtWpV/zrlcjmuuuqq2LVr17iKJ8gbRZM5iiRv5GFarRvs3r07VqxYEceOHYs5c+bEQw89FOeff35/yBYuXDhg/YULF8aLL7447P56e3ujt7e3/353d3etI5GwvPMWIXOMzDmOIskbear5St3b3/72eOaZZ+KJJ56IP/7jP441a9bEz372s/7HS6XSgPWzLBu07I02bdoUlUql/9bW1lbrSCQs77xFyBwjc46jSPJGnmoudTNmzIi3ve1tcckll8SmTZti+fLl8eUvfzlaWloiIqKzs3PA+l1dXYNeabzRunXrolqt9t86OjpqHYmE5Z23CJljZM5xFEneyNO4f09dlmXR29sbS5cujZaWlti2bVv/Y8ePH4+dO3fGypUrh92+XC73f5375A2GM968RcgctXGOo0jyxnjU9Jm6O++8M1avXh1tbW3R09MTW7ZsiR07dsTWrVujVCrF2rVrY+PGjbFs2bJYtmxZbNy4MWbNmhU33XRTveYnYfJG0WSOIskbeaup1P3yl7+Mm2++Ofbv3x+VSiUuuuii2Lp1a1xzzTUREfHpT386jh49Gp/4xCfitddei8suuyz+7u/+LpqamuoyPGmTN4omcxRJ3shbKcuyrNFDvFF3d3dUKpWoVqsuG09ik+k4TqZZGdpkOoaTaVaGN1mO42SZk5GN9jj6268AAAlQ6gAAEqDUAQAkQKkDAEiAUgcAkAClDgAgAUodAEAClDoAgAQodQAACVDqAAASoNQBACRAqQMASIBSBwCQAKUOACABSh0AQAKUOgCABCh1AAAJUOoAABKg1AEAJECpAwBIgFIHAJAApQ4AIAFKHQBAApQ6AIAEKHUAAAlQ6gAAEqDUAQAkQKkDAEiAUgcAkAClDgAgAUodAEAClDoAgAQodQAACVDqAAASoNQBACRAqQMASIBSBwCQAKUOACABSh0AQAKUOgCABCh1AAAJUOoAABKg1AEAJECpAwBIgFIHAJAApQ4AIAFKHQBAApQ6AIAEKHUAAAmoqdRt2rQpLr300mhqaooFCxbEDTfcEM8999yAdW655ZYolUoDbpdffnmuQzM1yBtFkjeKJnPkraZSt3PnzrjtttviiSeeiG3btsXrr78eq1atisOHDw9Y79prr439+/f33x599NFch2ZqkDeKJG8UTebI27RaVt66deuA+/fff38sWLAgnnrqqbjyyiv7l5fL5WhpaclnQqYseaNI8kbRZI68jeszddVqNSIi5s6dO2D5jh07YsGCBXHuuefGxz/+8ejq6hrP00BEyBvFkjeKJnOMVynLsmwsG2ZZFtdff3289tpr8fjjj/cvf+CBB2LOnDnR3t4ee/fujc997nPx+uuvx1NPPRXlcnnQfnp7e6O3t7f/fnd3d7S1tUW1Wo3m5uaxjMYE0N3dHZVKJbfjmFfeImQuRfJG0SZq5uQtTaPOWzZGn/jEJ7L29vaso6NjxPVeeumlbPr06dmDDz445OPr16/PImLQrVqtjnU0JoBqtZrrccwrb1kmcymSN4o2UTMnb2kabd7G9Pbr7bffHo888khs3749Fi9ePOK6ra2t0d7eHnv27Bny8XXr1kW1Wu2/dXR0jGUkEpZn3iJkjpHJG0XzM5W81PRFiSzL4vbbb4+HHnooduzYEUuXLj3lNgcOHIiOjo5obW0d8vFyuTzs2xZMbfXIW4TMMTR5o2h+ppK3mq7U3XbbbfHNb34zvvWtb0VTU1N0dnZGZ2dnHD16NCIiDh06FJ/61Kfixz/+cbzwwguxY8eOuO6662LevHlx44031uVfgHTJG0WSN4omc+Sulvd0Y4j36SMiu//++7Msy7IjR45kq1atyubPn59Nnz49W7JkSbZmzZps3759ub9vzMSWx3EsIm95zUpjyRtFmyyZk7c0jPY41vz260hmzpwZP/jBD2rZJQxL3iiSvFE0mSNv/vYrAEAClDoAgAQodQAACVDqAAASoNQBACRAqQMASIBSBwCQAKUOACABSh0AQAKUOgCABCh1AAAJUOoAABKg1AEAJECpAwBIgFIHAJAApQ4AIAFKHQBAApQ6AIAEKHUAAAlQ6gAAEqDUAQAkQKkDAEiAUgcAkAClDgAgAUodAEAClDoAgAQodQAACVDqAAASoNQBACRAqQMASIBSBwCQAKUOACABSh0AQAKUOgCABCh1AAAJUOoAABKg1AEAJECpAwBIgFIHAJAApQ4AIAFKHQBAApQ6AIAEKHUAAAlQ6gAAEqDUAQAkQKkDAEiAUgcAkAClDgAgAUodAEACaip1mzZtiksvvTSamppiwYIFccMNN8Rzzz03YJ0sy2LDhg2xaNGimDlzZlx99dXx7LPP5jo0U4O8USR5o2gyR95qKnU7d+6M2267LZ544onYtm1bvP7667Fq1ao4fPhw/zp333133HPPPbF58+Z48skno6WlJa655pro6enJfXjSJm8USd4omsyRu2wcurq6sojIdu7cmWVZlvX19WUtLS3ZXXfd1b/OsWPHskqlkt13332j2me1Ws0iIqtWq+MZjQarx3GsR97qNSvFkjeKNlkyJ29pGO1xHNdn6qrVakREzJ07NyIi9u7dG52dnbFq1ar+dcrlclx11VWxa9eu8TwVyBuFkjeKJnOM17SxbphlWdxxxx3xvve9Ly688MKIiOjs7IyIiIULFw5Yd+HChfHiiy8OuZ/e3t7o7e3tv9/d3T3WkUhYXnmLkDlOTd4omp+p5GHMV+o++clPxk9/+tP467/+60GPlUqlAfezLBu07KRNmzZFpVLpv7W1tY11JBKWV94iZI5TkzeK5mcqeRhTqbv99tvjkUceie3bt8fixYv7l7e0tETEb15dnNTV1TXolcZJ69ati2q12n/r6OgYy0gkLM+8RcgcI5M3iuZnKnmpqdRlWRaf/OQn42/+5m/iH/7hH2Lp0qUDHl+6dGm0tLTEtm3b+pcdP348du7cGStXrhxyn+VyOZqbmwfcIKI+eYuQOYYmbxTNz1TyVtNn6m677bb41re+Fd/5zneiqamp/9VDpVKJmTNnRqlUirVr18bGjRtj2bJlsWzZsti4cWPMmjUrbrrpprr8C5AueaNI8kbRZI7c1fKV2ogY8nb//ff3r9PX15etX78+a2lpycrlcnbllVdmu3fvzv1ru0xseRzHIvKW16w0lrxRtMmSOXlLw2iPYynLsqz+1XH0uru7o1KpRLVaddl4EptMx3EyzcrQJtMxnEyzMrzJchwny5yMbLTH0d9+BQBIgFIHAJAApQ4AIAFKHQBAApQ6AIAEKHUAAAlQ6gAAEqDUAQAkQKkDAEiAUgcAkAClDgAgAUodAEAClDoAgAQodQAACVDqAAASoNQBACRAqQMASIBSBwCQAKUOACABSh0AQAKUOgCABCh1AAAJUOoAABKg1AEAJECpAwBIgFIHAJAApQ4AIAFKHQBAApQ6AIAEKHUAAAlQ6gAAEqDUAQAkQKkDAEiAUgcAkAClDgAgAUodAEAClDoAgAQodQAACVDqAAASoNQBACRAqQMASIBSBwCQAKUOACABSh0AQAKUOgCABCh1AAAJUOoAABKg1AEAJECpAwBIQM2l7rHHHovrrrsuFi1aFKVSKR5++OEBj99yyy1RKpUG3C6//PK85mWKkTeKJG8USd7IW82l7vDhw7F8+fLYvHnzsOtce+21sX///v7bo48+Oq4hmbrkjSLJG0WSN/I2rdYNVq9eHatXrx5xnXK5HC0tLWMeCk6SN4okbxRJ3shbXT5Tt2PHjliwYEGce+658fGPfzy6urrq8TQQEfJGseSNIskbtaj5St2prF69Oj784Q9He3t77N27Nz73uc/FBz7wgXjqqaeiXC4PWr+3tzd6e3v773d3d+c9EgmrNW8RMsfYyRtFkjdqlo1DRGQPPfTQiOu89NJL2fTp07MHH3xwyMfXr1+fRcSgW7VaHc9oNFi1Ws39OOaRtyyTuRTJG0XLO3PyxkhGm7e6/0qT1tbWaG9vjz179gz5+Lp166JarfbfOjo66j0SCTtV3iJkjvzIG0WSN04l97df3+zAgQPR0dERra2tQz5eLpeHvYwMtTpV3iJkjvzIG0WSN06l5lJ36NCheP755/vv7927N5555pmYO3duzJ07NzZs2BAf+tCHorW1NV544YW48847Y968eXHjjTfmOjhTg7xRJHmjSPJG7mp9X3f79u1Dvl+/Zs2a7MiRI9mqVauy+fPnZ9OnT8+WLFmSrVmzJtu3b1/u7xszseV1HOudtzxnpXHkjaLlcRzljdEa7XEsZVmWFVMfR6e7uzsqlUpUq9Vobm5u9DiM0WQ6jpNpVoY2mY7hZJqV4U2W4zhZ5mRkoz2O/vYrAEAClDoAgAQodQAACVDqAAASoNQBACRAqQMASIBSBwCQAKUOACABSh0AQAKUOgCABCh1AAAJUOoAABKg1AEAJECpAwBIgFIHAJAApQ4AIAFKHQBAApQ6AIAEKHUAAAlQ6gAAEqDUAQAkQKkDAEiAUgcAkAClDgAgAUodAEAClDoAgAQodQAACVDqAAASoNQBACRAqQMASIBSBwCQAKUOACABSh0AQAKUOgCABCh1AAAJUOoAABKg1AEAJECpAwBIgFIHAJAApQ4AIAFKHQBAApQ6AIAEKHUAAAlQ6gAAEqDUAQAkQKkDAEiAUgcAkAClDgAgAUodAEAClDoAgATUXOoee+yxuO6662LRokVRKpXi4YcfHvB4lmWxYcOGWLRoUcycOTOuvvrqePbZZ/OalylG3iiSvFEkeSNvNZe6w4cPx/Lly2Pz5s1DPn733XfHPffcE5s3b44nn3wyWlpa4pprromenp5xD8vUI28USd4okryRu2wcIiJ76KGH+u/39fVlLS0t2V133dW/7NixY1mlUsnuu+++Ue2zWq1mEZFVq9XxjEaD1eM41iNv9ZqVYskbRcv7OMobIxntccz1M3V79+6Nzs7OWLVqVf+ycrkcV111VezatWvIbXp7e6O7u3vADUZjLHmLkDnGRt4okrwxFrmWus7OzoiIWLhw4YDlCxcu7H/szTZt2hSVSqX/1tbWludIJGwseYuQOcZG3iiSvDEWdfn2a6lUGnA/y7JBy05at25dVKvV/ltHR0c9RiJhteQtQuYYH3mjSPJGLablubOWlpaI+PUrjNbW1v7lXV1dg15tnFQul6NcLuc5BlPEWPIWIXOMjbxRJHljLHK9Urd06dJoaWmJbdu29S87fvx47Ny5M1auXJnnU4G8USh5o0jyxljUfKXu0KFD8fzzz/ff37t3bzzzzDMxd+7cWLJkSaxduzY2btwYy5Yti2XLlsXGjRtj1qxZcdNNN+U6OFODvFEkeaNI8kbuav1a7fbt27OIGHRbs2ZNlmW//hr2+vXrs5aWlqxcLmdXXnlltnv37ty/tsvEltdxrHfe8pyVxpE3ipbHcZQ3Rmu0x7GUZVlWTH0cne7u7qhUKlGtVqO5ubnR4zBGk+k4TqZZGdpkOoaTaVaGN1mO42SZk5GN9jj6268AAAlQ6gAAEqDUAQAkQKkDAEiAUgcAkAClDgAgAUodAEAClDoAgAQodQAACVDqAAASoNQBACRAqQMASIBSBwCQAKUOACABSh0AQAKUOgCABCh1AAAJUOoAABKg1AEAJECpAwBIgFIHAJAApQ4AIAFKHQBAApQ6AIAEKHUAAAlQ6gAAEqDUAQAkQKkDAEiAUgcAkAClDgAgAUodAEAClDoAgAQodQAACVDqAAASoNQBACRAqQMASIBSBwCQAKUOACABSh0AQAKUOgCABCh1AAAJmNboAWCiefVYNb794j/Vbf+luu154snquO8rF/xWvOOs9jo+QzGyLIsjfX2NHoNRmHXaaVEqTf7/grf94un4j8MH67b/yf//0OjV6xw3Z9r0+P1z3lfzdkodvMlLh1+O9S+d1egxOIXPZ88lUeqO9PXFOY/tbvQYjMLPr3xnzD799EaPMW7/Z9/e2N77W40egxEsiAPx++fUvp1SB28yZ1o5Lp32z6Nev55Xo6aaWl7hLz5jYd3mgJSdPyvi0Imfj3p957h81HJ+O3vaiTE9h1IHb/LWSlv87RVtjR6DKWLWaafFz698Z6PHYBRmnZbGx9A/967fafQI1IlSB9BApVIpibf0gMZL42UHAMAUp9QBACRAqQMASEDupW7Dhg1RKpUG3FpaWvJ+GogIeaNY8kbRZI5a1OWLEhdccEH88Ic/7L9/ug8BU0fyRpHkjaLJHKNVl1I3bdo0ryQojLxRJHmjaDLHaNXlM3V79uyJRYsWxdKlS+MjH/lI/Md//Mew6/b29kZ3d/eAG9SilrxFyBzjI28Uzc9URiv3UnfZZZfFN77xjfjBD34Qf/mXfxmdnZ2xcuXKOHDgwJDrb9q0KSqVSv+trc0vfWX0as1bhMwxdvJG0fxMpRalLMvq+hdADh8+HOecc058+tOfjjvuuGPQ4729vdHb29t/v7u7O9ra2qJarUZzc3M9R6OOuru7o1KpFH4cT5W3CJlLkbxRtImaOXlL02jzVve/KDF79ux45zvfGXv27Bny8XK5HOVyud5jMEWcKm8RMkd+5I2i+ZnKSOr+e+p6e3vjX//1X6O1tbXeTwXyRqHkjaLJHCPJ/Urdpz71qbjuuutiyZIl0dXVFV/4wheiu7s71qxZM+Z9/ttrHfHkq/+Z45RvlEVpnHsYevs83tUeuOc89pgNsd+83NB2UTTNmFWXfQ+nHnk72n04/m3X7hynpB7a3rE05rUvLPQ565G3iIhnn/1mvH7iWE5TvkFuH66pzzljsBwGrtOoleZz4q1vfX99dj6CemTuhX/693it69UcpyRv08sz4sL3v7vm7XIvdb/4xS/iox/9aLzyyisxf/78uPzyy+OJJ56I9vb2Me9z20v/El/s8qpkorv87FeiacaSQp+zHnmr/vK1+M4TW3OcknpYfez9hZe6euQtIqKj43/H9BlHcpqSetj/0qUNKXX1yNyu7T+Kf+/Zl+OU5K2pNHNilLotW7bkvcs4vac7zjtRzX2/tRrvNb2Rti+N8xXqeLfPw4mj7444s9jnrEfejh/tiXknir3iSO16ew4W/pz1yFtERG/P4jh++uG67LtQpWHOQ1lRV/rqp3xifkOety4/U3t7neMmuHJpbPWs7l+UyMN7pp0TXT/6bqPH4BRaLrm20SPkYs685uj998caPQancPYHL270CLm59N83RF/P8UaPwQhmXVzsVeF6mjPnUPzin53jJrLy/LHlbVKUure//e2xYMGCRo/BKcyePbvRI+Siad68+Mjn7270GOOWjXD1tlTYZ6Tq56zWRY0eITfz/uD8yE70NXoMRnDanBmNHiE3K373o/GuVb/d6DHGbbhzXArnt9OnTx/TdpOi1DU1NUVTU1Ojx2CKmD6jHG857/xGj8EUMqPN+Y3izF20OCKd10S8Qd1/pQkAAPWn1AEAJECpAwBIgFIHAJCASfFFif0/ejYOPvFio8fgFNrXrIxZ889s9Bjj1rOvK368+YeNHoNTOG/VebHkg7X/cs6J6Ntf+HIcP+aXD09ki849L97/Bzc2eoxcPH3vo/Hy3oONHoMRnDFrWly54b/VvN2kKHXdz++Ppld8O2yiO959OIlSd/Tlg7Gnu6XRY3AK8/5tfyz5YKOnyEfHz34c2YlDjR6DERw/0huRSKnb9y+vxi9O+PrrRDbzwMG4cgzbTYpSN3vZ/Hi5a0+jx+AUzmq+sNEj5GLm/DPj7Wf+pNFjcArzz0/n1860X/TBOH60Dn/7ldwsOvecRo+Qm/aL5sXsvZ2NHoMRlGcl/HvqFr93eSx+7/JGj8EU0bRkQXzwrpsaPQZTyIc+8z8aPQJTyLv+Zxp//YfBfFECACABSh0AQAKUOgCABCh1AAAJUOoAABKg1AEAJECpAwBIgFIHAJAApQ4AIAFKHQBAApQ6AIAEKHUAAAlQ6gAAEqDUAQAkYFqjBxiN557YH7v+5ueNHuPXSo0eYAhZowf4tQ+vuyTmnHVGo8cYt87DnXHnj+6s2/5LEzJE9ZHVMZwfu/Bj8d63vLdu+y9S15/9WZzo6Wn0GIxg5rveFWfecEOjx8jFV//5q/GPnf9Yt/07x43fvDPmxd1X3V3zdpOi1L3+q7440n280WNwCn19E6RdjtOx14/Fk51PNnoMTuH6c65v9Ai5qT78nXj95ZcbPQYjyHqPJ1Pqfl79uXPcBPeWOW8Z03aTotSd818WxMKllWEeTaNITC5DvwqbXSkXPEd9zJ81P7505ZcaPQancOG8Cxs9Qm7m/tEfRd+Rw8U9YSqnzQIvCJ1x3nnFPVmd3XTeTfGBtg80egxGMHPazDFtNylK3RlzpscZc6Y3egymiNnTZ8e1S69t9BhMIWf/4S2NHoEp5F0L3tXoEagTX5QAAEiAUgcAkAClDgAgAZPiM3Unurvj9QMHatqmVBriE7RDLRtueS3r1vBp3aE2z0b9oeVhVhxqB8PttIZ1s9EPFhERMxYvjtJ0n32EWv305Z/Gr/p+NWh5rf8NDto+mW9EjF4ev05jqJ8fZ59xdry18tZx7xvqaVKUuu7vb43O9esbPQan8La//2FMf8vYvoYNU9na7Wvj5aN+pclEdv0518cX3veFRo8BI5oUpe7Z6nMxa+Yw7xSP8oVo6Q3rvXGT0lA7GGafQ77+O+W6tb5SPsWWw7wIrW3d0qBVslpe3A6z7iu9r0VrTP5S98p/Ph9Hvvn7Oe1t4P9ZWRbDXwUewlDHNRv2SsR4rlAMndOh/vuo6VmybIh/3XyuHvWu/JNYdsXv5rKvRms72hOz+2r7NMyor0gN96ZDjc82vu0HG+b9gfFtX0O0ar2KOe/lPTWtP5Ht/r9/EpWXHsthT4NTUL9zXP6JG/Lnf63PVKdz3LHygjh37d/WvN2kKHX739EXf7rWx/8muh/MTuOtnqNHDseSo//W6DE4hScPdDZ6hNz8+YuvxFl9rzZ6DEbwL0fS+b2IvV0/d46b4F46NrbzwaQodVdMOyu+tv+Xwz4+Uqd/8/8OWJb95v7Jxj7cdm9c9zf/O3Cbkf65VtkQ//ybZaUhl5+82pYNsX325m1Kg19LDNrfKeZ6s7nTJv+fCIuIaJrfFt9755+PsMbAI1sa6XNPpTffHf462yBDvgIccrd1M2QGangl/sbsjbjTkw8N2u/wK7/9wpWjmmEy+Gzpf8WR40eGeGT0L5QGnnuyAf870rpv3mbwP9diuHnHduXmN+etobc/1VWegf9ci8HP987md0Qqte71y2+P73VeN8yjQ1yVHe4cN9TH0XM4xzXy/BZRv3Pc4PPb8CvPOGN2LBrVBANNilLXcu5vR8ucYf71hgxbNsTjQy17w/I3rjfU48OuU8MXEkY8rYz2yxqlNz325vujWecN6464rJa5IqJpLBGceM48c2789of+sNFjMIXc8t/XxK9O9NW0zah/8A37wmCIH94T8E92Dvudrxo+OjP09rVZ0JTGX8yJiLj8ve9v9AjUyaQodXH2Ob++ASToPUvnNnoEIAE+qAYAkAClDgAgAUodAEAClDoAgAQodQAACVDqAAASoNQBACRAqQMASIBSBwCQAKUOACABdSt1X/nKV2Lp0qVxxhlnxMUXXxyPP/54vZ4K5I1CyRtFkjdGqy6l7oEHHoi1a9fGZz/72Xj66afjiiuuiNWrV8e+ffvq8XRMcfJGkeSNIskbtShlWZblvdPLLrss3v3ud8e9997bv+wd73hH3HDDDbFp06YRt+3u7o5KpRLVajWam5sjIiLLsjj6qxN5j0nOZk4/PUqlUkQMfRzrZTx5iyh2VupD3ihaUcdR3ogY/XGclvcTHz9+PJ566qn4zGc+M2D5qlWrYteuXYPW7+3tjd7e3v771Wo1In79L3DSkeOvx3u++Pd5j0rO/t9n/2vMmvHrSJ08fnV4zTBArXmLGF3mmFzkjaIVkTl546TR5i33UvfKK6/EiRMnYuHChQOWL1y4MDo7Owetv2nTpvj85z8/aHlbW1veo1FnrX8+eFlPT09UKpW6PWeteYuQuZTJG0WrZ+bkjTc7Vd5yL3UnnXwb7qQsywYti4hYt25d3HHHHf33+/r64tVXX42zzz57wPrd3d3R1tYWHR0dLiFPMEMdmyzLoqenJxYtWlTIDKPNW8ToMidvE5e8UbRGZ07eppbx5C33Ujdv3rw4/fTTB72K6OrqGvRqIyKiXC5HuVwesOzMM88cdv/Nzc1COEG9+djU84rJSbXmLaK2zMnbxCVvFK3ozMnb1DaWvOX+7dcZM2bExRdfHNu2bRuwfNu2bbFy5cq8n44pTt4okrxRJHmjVnV5+/WOO+6Im2++OS655JJYsWJFfO1rX4t9+/bFrbfeWo+nY4qTN4okbxRJ3qhFXUrd7/3e78WBAwfiT//0T2P//v1x4YUXxqOPPhrt7e1j3me5XI7169cPuqxM4zX62Mjb1NLoYyNvU08jj4+8TT3jOT51+T11AAAUy99+BQBIgFIHAJAApQ4AIAFKHQBAAiZFqfvKV74SS5cujTPOOCMuvvjiePzxxxs9EhHx2GOPxXXXXReLFi2KUqkUDz/8cKNHyoW8TUyp5i1C5iaqVDMnbxNTHnmb8KXugQceiLVr18ZnP/vZePrpp+OKK66I1atXx759+xo92pR3+PDhWL58eWzevLnRo+RG3iauFPMWIXMTWYqZk7eJK5e8ZRPce97znuzWW28dsOy8887LPvOZzzRoIoYSEdlDDz3U6DHGTd4mh1TylmUyN1mkkjl5mxzGmrcJfaXu+PHj8dRTT8WqVasGLF+1alXs2rWrQVORKnmjaDJHkeQtfRO61L3yyitx4sSJQX+4eOHChYP+wDGMl7xRNJmjSPKWvgld6k4qlUoD7mdZNmgZ5EXeKJrMUSR5S9eELnXz5s2L008/fdAriK6urkGvNGC85I2iyRxFkrf0TehSN2PGjLj44otj27ZtA5Zv27YtVq5c2aCpSJW8UTSZo0jylr5pjR7gVO644464+eab45JLLokVK1bE1772tdi3b1/ceuutjR5tyjt06FA8//zz/ff37t0bzzzzTMydOzeWLFnSwMnGTt4mrhTzFiFzE1mKmZO3iSuXvOX7Jdz6+Iu/+Iusvb09mzFjRvbud78727lzZ6NHIsuy7du3ZxEx6LZmzZpGjzYu8jYxpZq3LJO5iSrVzMnbxJRH3kpZlmU5FEwAABpoQn+mDgCA0VHqAAASoNQBACRAqQMASIBSBwCQAKUOACABSh0AQAKUOgCABCh1AAAJUOoAABKg1AEAJECpAwBIwP8HHKdy06FYOEwAAAAASUVORK5CYII=\n", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -219,7 +274,7 @@ "fig, ax = plt.subplots(1,N)\n", "\n", "[ax[r].plot(ph_list,np.array(scan[r])) for r in range(N)];\n", - "[ax[r].set_ylim([-8.25,-6.5]) for r in range(N)]\n", + "[ax[r].set_ylim([0,35]) for r in range(N)]\n", "# [ax[r].set_xticks([]) for r in range(N)]\n", "\n", "fig.tight_layout()" @@ -227,23 +282,13 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 70, "id": "1badd675-ce02-4b8e-8f13-aae213f32c3b", "metadata": {}, "outputs": [ { "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGdCAYAAAAxCSikAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABfMklEQVR4nO3de3gU5d0+8Ht2k+wmIVkCgSSYECJnRE4BISB4aA1Stai1pvqKWvGAiIq0fStiPbYG/bWAWkCpVGrfCtEiRdsoxnoABC1gQhUQkVMCJEACJCHn7M7vjyezO3vMzmY3O8nen+vKlc1kdjIZQvbO93me70iyLMsgIiIi0jFDuE+AiIiIqD0MLERERKR7DCxERESkewwsREREpHsMLERERKR7DCxERESkewwsREREpHsMLERERKR7UeE+gWCx2Ww4ceIEEhISIElSuE+HiIiI/CDLMmpra9GvXz8YDN7rKN0msJw4cQIZGRnhPg0iIiIKQFlZGdLT071+vtsEloSEBADiG05MTAzz2RAREZE/ampqkJGRYX8d96bbBBZlGCgxMZGBhYiIqItpbzoHJ90SERGR7jGwEBERke4xsBAREZHuMbAQERGR7jGwEBERke4xsBAREZHuBRRYVqxYgaysLJjNZmRnZ2PLli1e9926dSumTJmC3r17IzY2FsOGDcPSpUvd9lu/fj1GjBgBk8mEESNGYMOGDYGcGhEREXVDmgNLQUEB5s+fj0WLFqG4uBhTp07FjBkzUFpa6nH/+Ph4zJs3D5s3b8a+ffvw+OOP4/HHH8eqVavs+2zfvh15eXmYNWsWdu/ejVmzZuHmm2/Gl19+Gfh3RkRERN2GJMuyrOUJEydOxLhx47By5Ur7tuHDh+P6669Hfn6+X8e48cYbER8fj7/+9a8AgLy8PNTU1OD999+373P11VcjKSkJa9eu9euYNTU1sFgsqK6uZuM4IiKiLsLf129NFZbm5mbs2rULubm5Tttzc3Oxbds2v45RXFyMbdu24bLLLrNv2759u9sxp0+f7vOYTU1NqKmpcXojIiKi7klTYKmsrITVakVKSorT9pSUFFRUVPh8bnp6OkwmE8aPH48HHngAd999t/1zFRUVmo+Zn58Pi8Vif+OND4m6sWPHgE8+Ee+JKCIFNOnWtd+/LMvt3gNgy5Yt2LlzJ1555RUsW7bMbahH6zEXLlyI6upq+1tZWZnG74KIuoTVq4HMTODKK8X71avDfUZEFAaabn6YnJwMo9HoVvk4deqUW4XEVVZWFgDg4osvxsmTJ/HUU0/hlltuAQCkpqZqPqbJZILJZNJy+kTU1Rw7Btx7L2CziY9tNuC++4Dp0wEft6Enou5HU4UlJiYG2dnZKCoqctpeVFSEyZMn+30cWZbR1NRk/zgnJ8ftmB9++KGmYxJRN3TggCOsKKxW4Pvvw3M+RBQ2miosALBgwQLMmjUL48ePR05ODlatWoXS0lLMmTMHgBiqOX78ON544w0AwPLly9G/f38MGzYMgOjL8vvf/x4PPvig/ZgPP/wwpk2bhueffx4zZ87Exo0b8dFHH2Hr1q3B+B6JqKsaPBiQJEC9mNFoBAYNCt85EVFYaA4seXl5qKqqwjPPPIPy8nKMHDkShYWFyMzMBACUl5c79WSx2WxYuHAhDh8+jKioKAwcOBCLFy/GfffdZ99n8uTJWLduHR5//HH85je/wcCBA1FQUICJEycG4Vskoi4rPR24/XbgL38RHxuNwKuvcjiIKAJp7sOiV+zDQtRNLV8OzJsH9OsHfPklwwpRNxOSPixERJ2usVG8NxgYVogiGAMLEelbQ4PzeyKKSAwsRKRvSoVFeU9EEYmBhYj0jYGFiMDAQkR6pwQVqxVobQ3vuRBR2DCwEJG+qSsrrLIQRSwGFiLSNwYWIgIDCxHpHQMLEYGBhYj0joGFiMDAQkR6p+6/wl4sRBGLgYWI9I0VFiICAwsR6R0DCxGBgYWI9I6BhYjAwEJEesfAQkRgYCEivWNgISIwsBCR3jGwEBEYWIhI7xhYiAgMLESkZ7LsHFLYh4UoYjGwEJF+tbQANpvjY1ZYiCIWAwsR6ZdrQGFgIYpYDCxEpF8MLETUhoGFiPSLgYWI2jCwEJF+MbAQURsGFiLSLwYWImrDwEJE+sXAQkRtGFiISL9cAwr7sBBFLAYWItIv14DCCgtRxGJgISL94pAQEbVhYCEi/WJgIaI2DCxEpF9KQDEYnD8moojDwEJE+qUElJ49nT8moojDwEJE+sXAQkRtGFiISL8YWIioDQMLEemXa2BhHxaiiMXAQkT6pQSUpCTxnhUWoojFwEJE+qUEFCWwNDUBshy+8yGisGFgISL9ch0SAkRoIaKIw8BCRPrlKbBwWIgoIjGwEJF+KeGkRw82jyOKcAwsRKRfSjiJjQXMZudtRBRRGFiISL+UcGI2M7AQRTgGFiLSLwYWImrDwEJE+uUpsLB5HFFEYmAhIv1SwgkrLEQRj4GFiPRLPek2NtZ5GxFFFAYWItIvzmEhojYBBZYVK1YgKysLZrMZ2dnZ2LJli9d933nnHVx11VXo06cPEhMTkZOTg02bNjnts2bNGkiS5PbWyF9MRJGNgYWI2mgOLAUFBZg/fz4WLVqE4uJiTJ06FTNmzEBpaanH/Tdv3oyrrroKhYWF2LVrF6644gpcd911KC4udtovMTER5eXlTm9m5RcUEUUmBhYiahOl9QlLlizB7NmzcffddwMAli1bhk2bNmHlypXIz89323/ZsmVOHz/33HPYuHEj3nvvPYwdO9a+XZIkpKamaj0dIurOGFiIqI2mCktzczN27dqF3Nxcp+25ubnYtm2bX8ew2Wyora1Fr169nLafP38emZmZSE9Px7XXXutWgXHV1NSEmpoapzci6kZsNqC5WTxmYCGKeJoCS2VlJaxWK1JSUpy2p6SkoKKiwq9j/OEPf0BdXR1uvvlm+7Zhw4ZhzZo1ePfdd7F27VqYzWZMmTIFBw4c8Hqc/Px8WCwW+1tGRoaWb4WI9E59V2b2YSGKeAFNupUkyeljWZbdtnmydu1aPPXUUygoKEDfvn3t2ydNmoTbbrsNo0ePxtSpU/HWW29hyJAhePnll70ea+HChaiurra/lZWVBfKtEJFeqYMJKyxEEU/THJbk5GQYjUa3asqpU6fcqi6uCgoKMHv2bLz99tv44Q9/6HNfg8GACRMm+KywmEwmmEwm/0+eiLoWJZgYjUB0NPuwEEU4TRWWmJgYZGdno6ioyGl7UVERJk+e7PV5a9euxZ133ok333wT11xzTbtfR5ZllJSUIC0tTcvpEVF3op5wq37PwEIUkTSvElqwYAFmzZqF8ePHIycnB6tWrUJpaSnmzJkDQAzVHD9+HG+88QYAEVZuv/12vPjii5g0aZK9OhMbGwuLxQIAePrppzFp0iQMHjwYNTU1eOmll1BSUoLly5cH6/skoq6GgYWIVDQHlry8PFRVVeGZZ55BeXk5Ro4cicLCQmRmZgIAysvLnXqyvPrqq2htbcUDDzyABx54wL79jjvuwJo1awAA586dw7333ouKigpYLBaMHTsWmzdvxiWXXNLBb4+IuiwGFiJSkWRZlsN9EsFQU1MDi8WC6upqJCYmhvt0iKijtm0DpkwBBg4Evv8eWL4cmDcP+OlPgbfeCvfZEVGQ+Pv6zXsJEZE+scJCRCoMLESkT94CC/uwEEUkBhYi0idWWIhIhYGFiPRJqaQo/VfYh4UoojGwEJE+scJCRCoMLESkTwwsRKTCwEJE+sTAQkQqDCxEpE8MLESkwsBCRPrEwEJEKgwsRKRP7MNCRCoMLESkT94Ci9UKtLaG55yIKGwYWIhIn5RKimtgATgsRBSBGFiISJ+UUKI0jGNgIYpoDCxEpE+uQ0IGAxAT4/w5IooYDCxEpE+ugUX9mIGFKOIwsBCRPjGwEJEKAwsR6RMDCxGpMLAQkT4xsBCRCgMLEemTr8DC5nFEEYeBhYj0iRUWIlJhYCEifVKqKEofFvVjBhaiiMPAQkT6xAoLEakwsBCRPjGwEJEKAwsR6Y8sM7AQkRMGFiLSn9ZWwGYTjxlYiAgMLESkR+pAwsBCRGBgISI9UgcSk8nxmH1YiCIWAwsR6Y8SWGJixF2aFaywEEUsBhYi0h+lgqIeDlJ/zMBCFHEYWIhIf5RAom4ap/6YgYUo4jCwEJH+eFrSrP6YgYUo4jCwEJH+MLAQkQsGFiLSHwYWInLBwEJE+sPAQkQuGFiISH/aCyzsw0IUcRhYiEh/WGEhIhcMLESkPwwsROSCgYWI9EcZ8mEfFiJqw8BCRPrDCgsRuWBgISL9YWAhIhcMLESkPwwsROSCgYWI9MefwCLLnXtORBRWDCxEpD/tBRYAaGrqvPMhorBjYCEi/fEnsHBYiCiiMLAQkf54CyzR0YAkOe9DRBEhoMCyYsUKZGVlwWw2Izs7G1u2bPG67zvvvIOrrroKffr0QWJiInJycrBp0ya3/davX48RI0bAZDJhxIgR2LBhQyCnRkTdgbc+LJLEXixEEUpzYCkoKMD8+fOxaNEiFBcXY+rUqZgxYwZKS0s97r9582ZcddVVKCwsxK5du3DFFVfguuuuQ3FxsX2f7du3Iy8vD7NmzcLu3bsxa9Ys3Hzzzfjyyy8D/86IqOvyVmFRb2NgIYookixrm2o/ceJEjBs3DitXrrRvGz58OK6//nrk5+f7dYyLLroIeXl5eOKJJwAAeXl5qKmpwfvvv2/f5+qrr0ZSUhLWrl3r1zFrampgsVhQXV2NxMREDd8REenO5ZcDn30GFBQAN9/s/LkLLgBOnACKi4ExY8JxdkQURP6+fmuqsDQ3N2PXrl3Izc112p6bm4tt27b5dQybzYba2lr06tXLvm379u1ux5w+fbrPYzY1NaGmpsbpjYi6CVZYiMiFpsBSWVkJq9WKlJQUp+0pKSmoqKjw6xh/+MMfUFdXh5tVfzVVVFRoPmZ+fj4sFov9LSMjQ8N3QkS6xsBCRC4CmnQrKbP028iy7LbNk7Vr1+Kpp55CQUEB+vbt26FjLly4ENXV1fa3srIyDd8BEemaP4FFmZhLRBEhSsvOycnJMBqNbpWPU6dOuVVIXBUUFGD27Nl4++238cMf/tDpc6mpqZqPaTKZYDKZtJw+EXUVrLAQkQtNFZaYmBhkZ2ejqKjIaXtRUREmT57s9Xlr167FnXfeiTfffBPXXHON2+dzcnLcjvnhhx/6PCYRdWMMLETkQlOFBQAWLFiAWbNmYfz48cjJycGqVatQWlqKOXPmABBDNcePH8cbb7wBQISV22+/HS+++CImTZpkr6TExsbCYrEAAB5++GFMmzYNzz//PGbOnImNGzfio48+wtatW4P1fRJRV8LAQkQuNM9hycvLw7Jly/DMM89gzJgx2Lx5MwoLC5GZmQkAKC8vd+rJ8uqrr6K1tRUPPPAA0tLS7G8PP/ywfZ/Jkydj3bp1eP311zFq1CisWbMGBQUFmDhxYhC+RSLqcrw1jlNvY2Ahiiia+7DoFfuwEHUTNhtgNIrHp04Bffo4f/6224C//Q1YsgR45JHOPz8iCqqQ9GEhIgo59V2YOSRERG0YWIhIX9RBhIGFiNowsBCRvihBxGAAojysC2BgIYpIDCxEpC/qFUKemkeycRxRRGJgISKHY8eATz4R78PF15Jm9fZwV1j0cK2IIggDCxEJq1cDmZnAlVeK96tXh+c8ukJg0cu1IoogDCxEJKoE994rlhQD4v1994WneuCrB4t6e7gCi56uFVEEYWAhIuDAAccLsMJqBb7/vvPPRe8VFj1dK6IIwsBCRMDgwWJVjprRCAwa1PnnovfAoqdrRRRBGFiICEhPB1audHxsMACvviq2dza9B5b0dGDVKsfHkhS+a0UUQRhYiEi4+WbH4yVLgNmzw3Meeg8sgLg2PXuKxw8/HL5rRRRBGFiISKitdTyOjg7fefgbWMLdh6W+Xrz31CuGiIKOgYWIhPPnHY9rasJ3Hl2hwtLUBDQ3i8fq60ZEIcPAQkSCusKiftzZukJg0cu1IoogDCxEJOjlRVjvfVgA/VwrogjCwEJEAoeE/Ke+PhwSIuoUDCxEJOilatAVAoterhVRBGFgISJBXSnoCoGltVW8hYP6+rDCQtQpGFiISNBL1cDfwAKI1TrhoJdrRRRBGFiISOgqc1hMJsfjcPVi4RwWok7HwEJEgl6qBu0FFqPR0dguXPNYXIeEZDk850EUQRhYiEjoKnNY1J/TQ2CRZUfXWyIKGQYWIhLUL8I1NeGrGnSFwOI6ZMZ5LEQhx8BCRIK6wmKzhW9+SHuN49Sf00OFBeA8FqJOwMBCRILri3C4qgZdocKil2tFFEEYWIhIcK0SMLB4xwoLUadjYCEiwfVFOFxLm7tCYOEcFqJOx8BCREJXrLCEa54NKyxEnY6BhYgE5UW4Z0/njztbV6iw6OVaEUUQBhYiEkuYlSpBv37iPYeEvFOujXKtWGEhCjkGFiISjc+UvivKizArLN4p1ybc14oogjCwEJHjBVeSgJQU522dqaUFsFrFY732YWltdcydYYWFqNMwsBCR4wW3Rw8gMVE8DkdgUQcQvVZY1OEkLU28Z4WFKOQYWIjI8YLboweQkCAeh2MOizqAqO/K7CqcgUW5LjExQK9e4jErLEQhx8BCRI4X3IQEfVRYYmIAg49fT+EMLMp1SUx0hDtWWIhCjoGFiDxXWMIZWHwNB6k/H44+LMp1SUgQ1wtghYWoEzCwEJFzhaUrBZZwVljCfa2IIgwDCxE5V1iUIaFwzmHRc2BRrou6wsLAQhRyDCxExAqLFp7msHBIiCjkGFiIqOvOYQn3kBArLESdhoGFiDxXWMIxJKRMovXVNE79+XAPCbHCQtRpGFiIyPMcFlZYPFMPCSkVluZm8UZEIcPAQkSeKyzheBHuSoFFPSQEsMpCFGIMLETkeQ6Lentn6WqBJSZGvKm3E1FIMLAQkXOFJSrKMUeks+exdIXGceo5LOr3rLAQhRQDCxE5V1iA8K0U6koVFmWuD5vHEXWKgALLihUrkJWVBbPZjOzsbGzZssXrvuXl5bj11lsxdOhQGAwGzJ8/322fNWvWQJIkt7fGcPwyIopE6gqL+j0Dizv1kBDA9vxEnURzYCkoKMD8+fOxaNEiFBcXY+rUqZgxYwZKS0s97t/U1IQ+ffpg0aJFGD16tNfjJiYmory83OnN3N4vLSIKDm8VFr0PCYV7WbP6PSssRCGlObAsWbIEs2fPxt13343hw4dj2bJlyMjIwMqVKz3uP2DAALz44ou4/fbbYbFYvB5XkiSkpqY6vRFRJ3GtsIRraXMgfVhkObTn5Mp1SIgVFqJOoSmwNDc3Y9euXcjNzXXanpubi23btnXoRM6fP4/MzEykp6fj2muvRXFxsc/9m5qaUFNT4/RGRAFyHeboKkNCQOcvvdbLtSKKMJoCS2VlJaxWK1JSUpy2p6SkoKKiIuCTGDZsGNasWYN3330Xa9euhdlsxpQpU3DgwAGvz8nPz4fFYrG/ZWRkBPz1iSKaut9KV5t0q35OZ7DZ3KtRrLAQdYqAJt1KkuT0sSzLbtu0mDRpEm677TaMHj0aU6dOxVtvvYUhQ4bg5Zdf9vqchQsXorq62v5WVlYW8NcnimjqF1rlxTdcd2z2N7BERwPK75zODCx1dY4hKFZYiDpVlJadk5OTYTQa3aopp06dcqu6dITBYMCECRN8VlhMJhNMJlPQviZRxFJeaE0mEQQA/VdYJEns09DQub1YlOthNDrm0bDCQtQpNFVYYmJikJ2djaKiIqftRUVFmDx5ctBOSpZllJSUIC0tLWjHJCIvXIc41I/1GljU+3RmhUU9f0Wp8LDCQtQpNFVYAGDBggWYNWsWxo8fj5ycHKxatQqlpaWYM2cOADFUc/z4cbzxxhv255SUlAAQE2tPnz6NkpISxMTEYMSIEQCAp59+GpMmTcLgwYNRU1ODl156CSUlJVi+fHkQvkUi8sl1STOg/2XN6n06M7C4LmkGWGEh6iSaA0teXh6qqqrwzDPPoLy8HCNHjkRhYSEyMzMBiEZxrj1Zxo4da3+8a9cuvPnmm8jMzMSRI0cAAOfOncO9996LiooKWCwWjB07Fps3b8Yll1zSgW+NiPziqcISrmXNeg8sriuE1I9ZYSEKKc2BBQDmzp2LuXPnevzcmjVr3LbJ7fRJWLp0KZYuXRrIqRBRR/mqsIQrsLTXh0W9TzgCixLoAFZYiDoJ7yVEFOn0NIdFmUDLCgsRuWBgIYp0niosel/WrN6Hc1iIIgIDC1Gk01OFRe+BxdOQECssRJ2CgYUo0ulxDouWwBKOPiyeKiwMLEQhxcBCFOl8VVjq64HW1s47F71XWDwNCSmP6+pE634iCgkGFqJI52sOC9B5czNkGWhqEo/1Glh8TboFRGghopBgYCGKdJ4qLOo2/Z011KGEFUD/gUUd6GJjAUPbr1JOvCUKGQYWokjnqcICdP48FnXw0HtgUYc7SeI8FqJOwMBCFOk8VVjUH3fW0mZl8qzB4Kju+BKOxnGe5rAAXNpM1AkYWIginbcKS2e351dPuFVuLOiLXoaEAC5tJuoEDCxEka69Cks4Aos/9DIkBLDCQtQJGFiIIp3e5rBoDSzh7sOi/pgVFqKQYWAhinTeXoQ7uz2/3issssw5LERhxMBCFMlsNkfvkHBXDfQeWBobAatVPOYcFqJOx8BCFMnUjc666pBQZwUW9XWIj3f+HCssRCHHwEIUyZQXWIPBsUxY0dnLmvUeWJTr0KOHo1GcghUWopBjYCGKZOoJt65LicO1rNk1OHnT2X1YvM31AVhhIeoEDCxEkczbkmb1ts4KLMpqH71WWLz1YAFYYSHqBAwsRJHM25JmgHNYXLHCQhRWDCxEkcxXhYXLmp15W9Ks3sYKC1HIMLAQRbIQVljKqxuw7WAlyqv9bOzWSY3jNJ+XwteQECssRCEXFe4TIKIwCtEcloIdpXj0na8hy4BBAvJvvBh5E/r7flInVFj+su0wnnp3L2RoOC+FryEhVliIQo4VFqJI5k+FReOQUHl1Axa2hRUAsMnAY+98035FI8SBpby6wR5WNJ2Xwp8hIVZYiEKGgYUokvkzh+X8edjThx8OV9bB5rK7VZZxpLLe9xMDDSytreLNj/Ny/S78Oi+FP5NuWWEhChkGFqJI5k+FRZadO+K2Iys5Hi4dXWCUJAxIjvP9xED7sABAU5Nf5+XKr/NS+LOsmRUWopBhYCGKZL4qLHFxjo6uGioHaZZYXDmsr/1jCcBzN45EmqWdIKK1D4vJ5Hjsx7BQXLTzlD2j5Od5KfypsLS0+BWeiEg7BhaiSOarwiJJAc9jSTA7wsG0Icn+TWzVOiRkNALR0c7P9WH/SefQ9d6Dl/o/4RbwPYdFff04LEQUEgwsRJHMV4VFvV3ji3DpGce8kKNVfs4R0RpY1Pv6E1gqnENXU6vN/68D+B4SiopynAuHhYhCgoGFKJL5qrAAwQksZ+pR39z+pNgOBRY/erF8W+H8PajP0S++hoTU21lhIQoJBhaiSOZvhUXDkFBdUysqzzcDAHqYoiDLwIGTflQdQl5hqbWfEwCU+lv5UfgaEgLYPI4oxBhYiCJZexWWAO7YXHZWBIGecdEYlW4B4AgLPoUwsMiybJ/DctmQPgBYYSHqahhYiCJZCF6ElcpF/15xGJoqnu86HONRCAPLiepG1Da2Isog4fKhHQwsnuawAKywEIUYAwtRJFNeXIM4h0UJAhm94jCsLbDsP+nHkFIIA4sy4fbCPvEY2Fd8r2VaAktzs2O5MissRGHBwEIUqWS5/QpLAHdsVgJLZq84DE0Vz/drSEiZOOtv4zj1vu0EFqXCMzQ1EZm9RKO48ppGNLVa/fs66hDCOSxEYcHAQhSpmpsdLe2DOSR0xjEkNCSlByQJqDzfjMrz7TRUC2mFRZz/sNQE9IqPQXyMEbIMHDvr532ElO/fbBZLmD1hhYUopBhYiCKV+oU13r1tPYAOB5a4mCj0b6totFtl6YTAMjQlAZIkIaPtnPyex9Le/BWAFRaiEGNgIYpUygtrbGz7VQM/h4RsNhnHzoiqhRIKhqb4OfE2RH1YWqw2HDwtvldlErASovyex9Lekmb151hhIQoJBhaiSNXekmZA87LmippGNFttiDJISLOIMGGfeFvhI/S0tgLWtvkkQa6wHDpdhxarjB6mKKQniTkvSmDxuwtve3N9AFZYiEKMgYUoUrXXNE79OT8DizLEkp4Uiyij+PXi18RbdeAIcmD5ti0oifk04j7Smb1DMCTECgtRSDGwEEUqfyosAQYWZTgIcAzDfHfyPGw22fMT1YFDfRfm9vgRWParVggpMrQOCflTYVE+xwoLUUgwsBBFKn8qLBqXNZepJtwqBvSOQ0yUAQ0tVu8VDSVwREeLuzD7S0NgUYam1OdXeqYesuwlRKn5M4dFCX6ssBCFBAMLUaQKYYVFHViijAYMbmvW5nXirRI4tPRgUe/vc0hIqbA4wsYFSbGQJKC+2Yqquub2vw4rLERhx8BCFKm0zmHxoxJxtMo9sACOsOB1HouyykfL/BX1/l4CS21jC46fE8dWV1hMUUakJZqdztknLcuaWWEhCgkGFqJIpaXC0trqaE3vg31IqLdzYGm3RX8gS5rV+3sJLN+13fAwJdGEnnExTp9TztGveSyssBCFHQMLUaTyp8KiDjPtzGM539RqH17JcKuwiMpEu0NCgQYWL31YvvUw4VbRX0vzOM5hIQq7gALLihUrkJWVBbPZjOzsbGzZssXrvuXl5bj11lsxdOhQGAwGzJ8/3+N+69evx4gRI2AymTBixAhs2LAhkFMjIn/5U2ExGh1dcNt5IVYqFUlx0Ug0Rzt9TqmwHKmsQ2OLh/v3hKjC4mnCrUJTYNGyrLm+3tFThoiCRnNgKSgowPz587Fo0SIUFxdj6tSpmDFjBkpLSz3u39TUhD59+mDRokUYPXq0x322b9+OvLw8zJo1C7t378asWbNw880348svv9R6ekTkL38qLOrPtxNYPE24VfRNMKFnXDRsMvD9KQ9DJiEKLN+qWvK70tSeX0vjOACoq2v/mESkiebAsmTJEsyePRt33303hg8fjmXLliEjIwMrV670uP+AAQPw4osv4vbbb4fFYvG4z7Jly3DVVVdh4cKFGDZsGBYuXIgf/OAHWLZsmdbTIyJ/+VNhAfxe2lxa5d6DRSFJku8W/SEILLIsq3qw+Kiw+DPp1p8hIbPZsSSb81iIgk5TYGlubsauXbuQm5vrtD03Nxfbtm0L+CS2b9/udszp06f7PGZTUxNqamqc3ohIgxBVWDJ7uwcWoJ0W/SEILCdrmlDd0AKjQcKgvu6hLLO3GOqqqGn0PEyl5k+FRZI4j4UohDQFlsrKSlitVqSkpDhtT0lJQUVFRcAnUVFRofmY+fn5sFgs9reMjIyAvz5RRPK3whKEISGgnYm3IQgsSkv+Ab3jYI52b0aXFBeNHiZx08djZ73fPBGAf3NYALbnJwqhgCbdKvfjUMiy7LYt1MdcuHAhqqur7W9lZWUd+vpEEcefqoH6835OuvU0JASoW/R7OI6yyieIjeOUrzPMwwohQPzO8btFv7/XijdAJAoZL/eU9yw5ORlGo9Gt8nHq1Cm3CokWqampmo9pMplg0nLPESJypryoBmEOi9Umo+xsexUW8WJ/sqYJ5+qbnfuihKTC4n3+iqJ/r1jsK6/B0Sofk2StVsck2iCFOyLSTlOFJSYmBtnZ2SgqKnLaXlRUhMmTJwd8Ejk5OW7H/PDDDzt0TCJqRxArLBU1jWixyog2SkizeK6S9DBFIT1JfM5tWCgEfVh8TbhVOJY2+xgSUldL2hsSYoWFKGQ0VVgAYMGCBZg1axbGjx+PnJwcrFq1CqWlpZgzZw4AMVRz/PhxvPHGG/bnlJSUAADOnz+P06dPo6SkBDExMRgxYgQA4OGHH8a0adPw/PPPY+bMmdi4cSM++ugjbN26NQjfIhF55G+FxY/Aoqy0SU+Kg9HgfSh3aEoCjp1twP6KWky6sLfjE0GusLRabTjQtnzaUw8WRf+2ibc+lzYr33d0dPt3kmaFhShkNAeWvLw8VFVV4ZlnnkF5eTlGjhyJwsJCZGZmAhCN4lx7sowdO9b+eNeuXXjzzTeRmZmJI0eOAAAmT56MdevW4fHHH8dvfvMbDBw4EAUFBZg4cWIHvjUi8spqFQ3OgPYrLH4MCbU3f0UxNDUB//72VPArLI2N4l5HbfPejlTVo7nVhrgYIzKSvJ9Tf3/msPizpFnBCgtRyGgOLAAwd+5czJ071+Pn1qxZ47bNn9u333TTTbjpppsCOR0i0krd2CwIQ0KOFUK+J80O9ba0uaOBBQCam+0VEGU4aHBKAgw+Kj7qbrdeJ/r7O3Sm3ocVFqKg472EiCKR8oJqNAZlmONoO0uaFcqKne9Onnf+QyYYgUU1LKQEomEeOtyqXdAzFpIENLRYcfq8l5s7+rukGeANEIlCiIGFKBKpm8a115JAU4XFd2C5sE88oo0Szje1Ovc+CTSwxMQ4zl8VWPxZIQQAMVEG9GubJOx1WEhLhYWN44hChoGFKBL52zQO0DSHpX+veJ+HijYaMLCP+Jr71fNYlLChtQ+LJHmceLvf3oOl/ZDR7k0QtcxhYYWFKGQYWIgikb9t+dX7eKka1Da24ExdMwAgo505LIBqHou6gZyyLFlrhUX9nLbAUt/cag8f7VVYAPU9hbwsbWaFhUgXGFiIIpGWCks7gaWsrYdJr/gYJJij2z2cEiK+9VRhCUJgEfNjgOQeJvTu0X5zyf6926mwcA4LkS4wsBBFIi0VlnaGhErPiBVH7S1pVni8CWIwAktblcY+4daP6grgOG/l+3ATyLJmVliIgo6BhSgSBVJhaWoCWlrcPu3vhFuFchPEQ6fr0NxqExuDWGHxd8Ktot05LIEsa2aFhSjoGFiIIlEgc1gAj5UD5YU+08/A0s9iRoI5Cq02GQdPt51HEAOLPy351ZTzPlnThMYWq/sOWoaEWGEhChkGFqJIpKXCom5J7zGwiKEYfysskiRhaIoyLNR2vBAEFn+HhHrGRSPBJHpoHjvrocrCCguRLjCwEEUiLRUWwOc8ltIqbXNYAA8Tb9sJLOXVDdh2sBLl1R5W8qgCy+naJlTVNUOSgMF9/fveJEmyn/vRKg+BJdA5LH50+CYi/wXUmp+IujgtFRZAvFifPu1WYbHaZHsDOGW1jT/cJt766MNSsKMUC9/5GjYZMEhA/o0XI29Cf8cOynMaG+3VlQG94xEbY/T7fPr3isPe8hrP81gCqbBYrWLOTyAVIyLyiBUWokik5UVYvZ9LYCmvbkCrTUa0UUJqov8vzsrEW/uQkJc+LOXVDfawAgA2GXjsnW+cKy2qCsu3bQFoaDst+V35XNqsZQ5LvKpxHuexEAUVAwtRJFKGhPytsHgZElJe4DOS4mD0cZNBV0qgOFHdiOr6ZlGNANwCy4d7T9rDisIqyzhSqQoWqsCidcKtwuddm7UMCRmNQFxbpYnzWIiCioGFKBIFqcKivMBrmb8CAJa4aKRZRND4ruyM4xOqwLJ+1zH89r29Hp/fu0eM+3MaGjS15FfzubRZ67XiSiGikGBgIYpEWissXgKLMknV3xVCavaJt8fPOjaazbDaZDxXuA+/eHs3WmwyRqQlwrV4M+f/duGQsiS6LbBYGxrx3cmOVVhKz9Q730Valh3Xyp8hIYArhYhChJNuiSJRkCosWpvGqQ1NTcCn+0875rFIEmqswEN/24FP958GADx05SDM/+EQnKxtxJHKejS1WvHYO1/j0Ok6zFz+OZbfOg7T2gJLaRPQKNlgjjYgs7fvmzC66tczFgYJaGyx4XRtE/oq83Hq6wGbzfkatIcVFqKQYIWFKBIFaQ5LoENCgGql0CmxLPpwygBcv2IbPt1/GuZoA/5461gsyB0Kg0FCmiUWOQN74/KhfbFx3qXIzkxCbWMr7nz9P1gdkwUZwP5mMUw0uG+Cpvk0ABATZUCaRaw2choWUr5fg8ExN6U97dx7iYgCw8BCFImCXGHJ1LCkWTE0RYSgb043YOPwaZj5s8U4dLoOaRYz/j5nMq4d1c/j8/okmPDmPRPx0+x02GTgWTkLv57xELbbxPH8uWO0J5meVgqpl39LfoYgDgkRhQQDC1GkUc/L6MAclprGFpytF/cWCqTC8lWpmLvSYJXx8HW/Qo0pHuP698TGeVMw8gKLz+eaoox44aZR+M21I2CAjLdG5eIv5iwAwPtfV6BgR6nm8/E48VbLkmYFh4SIQoKBhSjSNDaKxmZAhzrdlrZNuO0dH4MeJm3T4cqrG/DExm8cGyQJkixjad4Y9E3wr5+LJEmYfWkW/pB0WoSwtgqIDA+9Wvxgv2tzlYchIX+vk3pfVliIgoqBhSjSqF9I4/2cnOqhwtKR+SuHK+vc+qvIkoQT5xo1Hysl1ug2XOPWq8UPPissWgILKyxEIcHAQhRplBfSuDjR6MwfHgJLR1YIZSXHuy1VNso2DEgO4FgJRhiUlTzKsSRJ87GCFlhYYSEKCQYWokij9caH6n09BJZAJtymWWKRf+PFMLZVRow2K5478L59pY6mYyWYkL/pZRhlEVqMkoTnbhyp+VjK93GqtgkNzW1DZpzDQqQb7MNCFGm03vgQ8DyHpQNDQgCQN6E/pg3pgyNvvYcBv5iLtAmjAzoOzGbk/bcI0xKtOLLmLQxIjgso+Fhio5FgjkJtYyvKztZjSEoC57AQ6QgrLESRJsgVlkCGhBRplljkRNUhrbYq8Dsbtz0vrfo0cgb2DiisAGISb3/Xibecw0KkGwwsRJEmkAqL8oJdVwfYbGi12nD8rFiF05HAAkCsWgI6HFjsx+kAt3ksgQwJscJCFBIcEiKKNIFUWNQv2OfPo7w1Cq02GTFGA1ISAwwaiq4QWFhhIQo7BhaiSBNIhcVkAqKigNZWoKYGZY0iJKT3itXcBt+NEjRiAxvKsT8vGIGlbeKtsmSbc1iI9INDQkSRJpAKiyQ5zWM5GoT5K3YNbQ3edFRhOcoKC5HuMLAQRZpAKiyAU2AJxoRbu2ANCTVo62zrifL9lJ2ph80mcw4LkY4wsBBFmkCqBoDT0mZdBpbWVvHWAf16xsIgAU2tNpw+3xTYkJASBBsaOnw+ROTAwEIUabTe+FChqrB0pC2/m2AFFgBoaurQqUQbDejXU8yJKT1T37FOt4BYVUVEQcHAQhRpAq2weBgSCqTLrZuOBhaTyf1YHaB8T6VV9YENCcXEiAnKAOexEAURAwtRpAm0wtL2ol1dXYdz9S0AgIwkHQSWqChHQAjmxNuqusDCnXqCMuexEAUNAwtRpOlghaWsWgy7JJqjUNPY0vHz6WhgUT83CIFFGeb66kgVys1tlZUOVKOIKDgYWIgiTQfnsKw9L55X09iKKYs/RsGO0o6dT0f7sKifG4TAcqytg+/WQ2cxZc7rKBh1lfZrpezPCgtR0DCwEEWaDlRYyhN6429yqn2TTQYee+cblFd3YEmxjios5dUNWPsfRwCzGQx4bPo8lJ9v1nYgVliIgo6BhSjSdGAOy8s5eWKOhopVlnGksj7w8+lo4zj1czvYi+VwZR1k2Xmb1WDU/v2xwkIUdGzNTxRpAqywFCAVb469yG27UZIwILkDk291VGHJSo6HQRKVIztZRt8Ek9fneMQKC1HQscJCFElaWx0v6hoqLO9/XY6FZ3oBAC6rPgJjW5XFKEl47saRSLN0YP6JjgJLmiUW+TdebP/+IMuAJOGp9/agqdXq/4HYnp8o6FhhIYok6iEKPyssWw9U4uF1JbBBws92b0L+2f+gYtMnOFJZjwHJcR0LK4CuAgsA5E3oj2lD+uDI2//C+cUv4OEbFmLLgUo8UlCCl28Z59/NHrmsmSjoWGEhiiTKC2h0tHPDNS+KS8/i3r/uRLPVhh+lGPG7Tcsh1dQgzRKLnIG9Ox5WAN0FFkBUWnLks7jq4A6sOvYhYowGFH5dgUUbvobsOsnFE1ZYiIKOgYUokmi48eF3J2tx5+s7UN9sxdTByVg6uTeMsi34L8I6DCwA7N/npYYavHTLGBgkYN2OMiz+4Nv2n8sKC1HQMbAQRRLlBbSd4aCyM/WYtfpLVDe0YGz/nnjltmyYerY1UYuwwILERFw9Mg35N14MAHj1s0NY+elB389lhYUo6DiHhSiStFNhKa9uQHHpWfzuX/twsqYJQ1MS8PqdExBvinLcT6e21j4ZtcPUd1jWSeM4O5c7NedN6I/qhhY8V/gtnv/gW0gARmVYkJUc7z40xgoLUdAxsBBFEh8VloIdpVj4ztf2Jb1J8dF4Y/Yl6BkX4/wcmw2orwfi4zt+PuqAodcKi+pa3TttIM7Vt2DFpwftQ0MGCci/8WLkTejveC4rLERBF9CQ0IoVK5CVlQWz2Yzs7Gxs2bLF5/6fffYZsrOzYTabceGFF+KVV15x+vyaNWsgSZLbW2Mwf/kQkdcKS3l1g1NYAYDq+hbY1BNM4+MdVZVgvRCr/4/7MQnYqyA1jnPipV/NbZP6O33ssdsvKyxEQac5sBQUFGD+/PlYtGgRiouLMXXqVMyYMQOlpZ7vJ3L48GH86Ec/wtSpU1FcXIzHHnsMDz30ENavX++0X2JiIsrLy53ezB35i4soQpRXN2DbwUr/2uN7qbAcrqxzbpYG8ULs1OFVfRfiYAeW6GjAaAz8OCGew6J2pMq9661bt1+NFRZN/4ZEEUrzkNCSJUswe/Zs3H333QCAZcuWYdOmTVi5ciXy8/Pd9n/llVfQv39/LFu2DAAwfPhw7Ny5E7///e/xk5/8xL6fJElITU11ez5Rt3XsGHDgADB4MJCeHtAh1MM4HocmXHmpsPTzsDzZYwfbhAQxt0OZ39FRwZhwq35+COewKDx1w5UkOF8rDRUWzf+G7QnCzxWRHmmqsDQ3N2PXrl3Izc112p6bm4tt27Z5fM727dvd9p8+fTp27tyJlhbHrenPnz+PzMxMpKen49prr0VxcbHPc2lqakJNTY3TG1GXsXo1kJkJXHmleL96teZDuA7j+HUjQi/DHP/6utzpY68dbENVYdFjYPFyrdy64QJINEchSZnrA/hdYQno39CXIPxcEemVpsBSWVkJq9WKlJQUp+0pKSmoqKjw+JyKigqP+7e2tqKyshIAMGzYMKxZswbvvvsu1q5dC7PZjClTpuDAgQNezyU/Px8Wi8X+lpGRoeVbIQqfY8eAe+8Vk1cB8f6++8R2DTwN47R7I0IPNz48VduIFZ98DwB48rrhWHvPJGx99ArPf+VHYmBxGRICxIqhrY9egb/cNQEpCSZUN7TitS2HHDuoKyw+Gs0F9G/oTZB+roj0KqBJt5LLckZZlt22tbe/evukSZNw2223YfTo0Zg6dSreeustDBkyBC+//LLXYy5cuBDV1dX2t7KyskC+FaLOd+CA40VFYbUC33+v6TDK0ISaBPi+EaGHqsEfNn2HumYrRmf0xB05Wb472Cov3hE8JKRIs8TisiF98dg1wwEAKz49iJM1jc7Psdl8TwT2kGUCvplkkH6uiPRKU2BJTk6G0Wh0q6acOnXKrYqiSE1N9bh/VFQUevfu7fmkDAZMmDDBZ4XFZDIhMTHR6Y2oSxg82H2b0QgMGqTpMGmWWNw4znmOggzgu5M+5k24VFj2nKjGW7tE2H/i2hEwtHefnFBVWDrSg0X9/E4YEnL149H9MLZ/T9Q3W/H7TfvFxjhV4PAyj6W51Ybf/muf2/aAbyY5eLB7b5wAfq6I9EpTYImJiUF2djaKioqcthcVFWHy5Mken5OTk+O2/4cffojx48cjOjra43NkWUZJSQnS0tK0nB5R15CeDvTs6fjYaARefTWgCZKNLeIOwjeO7Yebxl0AAPjl27txpq7Z8xNUL8KyLOPZf+6FLAPXje6H7Myk9r9gpAwJqe9q3U5gkSQJv7l2BADg718dwzfHqwGDod15LEuKvsPe8hokxUXj/2ZPtG+/fGjfwM45PR245BLHxwZDwD9XRHqkeUhowYIFeO211/DnP/8Z+/btwyOPPILS0lLMmTMHgBiquf322+37z5kzB0ePHsWCBQuwb98+/PnPf8bq1avxy1/+0r7P008/jU2bNuHQoUMoKSnB7NmzUVJSYj8mUbdSWQmcO+f4ePVqYPZszYex2mRsOSDmgf3PpEw8e/3FGNS3B07XNuGxd7zcpE9VYflw70l8cegMTFEG/Prqof590cQgt+dXhkuCFViC1YdF/f35cVfrcf2TMHNMP8gy8Mw/94prrwQWDxWWLw5V4dXNor1//o2jcOngZIzO6AkA+Oy704Gf95kzjsdz5wb0c0WkV5oDS15eHpYtW4ZnnnkGY8aMwebNm1FYWIjMzEwAQHl5uVNPlqysLBQWFuLTTz/FmDFj8Oyzz+Kll15yWtJ87tw53HvvvRg+fDhyc3Nx/PhxbN68GZeo/1og6i5273b++PDhwA5z7ByqG1qQYI7C6PSeiI0xYlneGEQbJXywpwJv7/Iw2bLthbgpPgHPFYrhiHumXoj0JD/nTCgv3t19Dovy/ZlMQEyM733b/PrqYTBHG/Cfw2fwwTcVXqtR1Q0t+MVbuyHLQN74DFw9UrRzuGxwMoAOBJazZ8U8FkWAP1dEehVQa/65c+di7ty5Hj+3Zs0at22XXXYZvvrqK6/HW7p0KZYuXRrIqRB1PUpgMRjEJMn//Cegw2xue2GbOjgZUUbxt8fICyxYcNVQPP/Bt3j63T2YmNULmb1VLfTb/tp/oyoGR6vq0SfBhPsvH+j/F42UISE/56+o9esZi3unXoiXPv4ez72/D1cmWGAC3CosT278BsfPNSCzdxyeuG6EfftlQ/vgpY+/x9YDlbDaZBjbm0/kaudO8V75uXINxkRdHO/WTNTZSkrE+x/9SLzfscPn0ldvlL/ELxvSx2n7vdMuxCVZvVDXbMUjBSVotapWjtTWoio2ES8dFD2Q/nf6UHFjQ38xsPh032UDkZJoQtmZBrw+5HLnYwHYWHIc/yg5AaNBwtK8MU7XfnR6TySao1Dd0ILdx85pP+cdO8T7q68W748dA6qqtB+HSKcYWIg6m/KX7+23i5b0lZXA0aOaDnGuvhm7y84BAKa5BBajQcKSm0cjwRSFr0rPYcWnBx2fPH8eS6behtoWGSMvSMRPxmmckBnsOSx6DywaVx/Gm6Lwv9OHAQD+mD4Zp+N62issx8814PF/fAMAmHfFIIzr7zzJOcpowKVtw0KbAxkWUgLLD34AXHiheMwqC3UjDCxEnam5GdjXtpT1kkuAUaPEY+XFxk9bv6+ETQaGpPTwuAQ2PSkOz14/EgDw4r8PoKTsHCDL2G/uhbWjpwMAfnONH8uYXUXaHBaNFRYAuGHsBRiVbsF5YwyWTP0foLYWNpuMX7xVgtrGVozJ6Il5V3peaqxUywKax6L8DE2YAIweLR4zsFA3wsBC1Jn27gVaWsSy5v79HctQNc5j+Wy/5+EgtZlj+uG60f1gtcmYv64YddW1+O3ld8FmMGLGsGRMvNBzHySfOCTULoPBscy5YFQu9lW34rWth/DFoTOIizFiad4YRBs9/+pVqmW7y87hXL2XpemenDgBHD8u5q+MG+cILMrwI1E3wMBC1JmUv3hHjxZNviZMEB9rqLDIsozNB0RgcR0OUpMkCb+dORJpFjOOVNXjptU7sSVrHKJbW7Dw2osCO/9QDQkFs3FcAPOB3AQ4JKSYMKAXrrGehM1gxIN16Xj+g28BiOZ8WcnxXp+XZonFkJQesMmiiuY35efnoouA+HhgzBjxMSss1I0wsBB1JnVgARyBZdcu0UbdD/tP1uJkTRPM0QZMGNDL576WuGj84WbxtfadFj1KWo1R2H74jK+neRfsIaFg92GRZTHs1lEdGBJSPGo6AaO1Fd8jHlZb+/sr7MNC+zUMC6mHgwDHz9fevcG5HkQ6wMBC1JmUEr3ygjJ8uPiL+Px5YP9+vw6hvJBNurA3zNHGdvfPSo6HeqaKLEmB3xFY70NC6mN2RAeGhBRRPeJgMzj/+yza0P51V6pmmw+c9tz8zxPXwJKZCVgsYvhxn3v7f6KuiIGFqLPIsqPCopTsjUYgO1s89nMeizIc5Gv+itrhyjq3e+wFfEdg5QW8pQVoatL+fFdKZ9aOhgx1c7dDh7zv568gBJbDMRbILvf28ee6TxjQC+ZoA07WNGH/ST+CoSw7AosyJ0qSOPGWuh0GFqLOcvy4eIE2GoERjoZhWuax1De3YsfhswD8Dyye7uoc8B2B1S/gHa2yrF4NbNwoHj/zjPg4UH/+s+Px+PEdOxbQ4TksAJDV0wSDy92T/bnu5mgjctomRPs1LHTwoOhyazIBF1/s2M7AQt0MAwtRZ1GGg4YNcx7C0BBYvjhUhWarDelJsT4nb6qlWWKRf+PFMLbVWYyyLfA7AhuNjjsRd2Qey7FjwL33Oj6WZeC++8T2jh7LZgv8WIogzGFJS4pH/qaXYZRFaDFKkt/XXT0s1C7l52bMGNHXR8GVQtTNBNSan4gC4DocpFACS0mJGGYxmbweQr2cWZL876GSN6E/pn31MY78bgkGjB2GtAnXaThxFwkJQH19xyosBw6IYKFmtQLff6/97sLBPJYiCENCSEhA3n+LMM1UjyNrN2JAcpzfIVGpnu04fBZ1Ta2+uxErQ4nKz5FCvVJIlsUwEVEXxgoLUWdxXSGkyMoCevcW80L++1+fh/DWjt8faY3VyCn7GmmxHfxvH4ylzYMHu7+AGo3AIM8N1do9lsHlewr0WIogDAkpYSft9HHkDOytqaKVlRyPjF6xaLba8MWhdtrru85fUVx0kbgOVVWiTwtRF8fAQtRZXFcIKfzsx3K0qg5HquoRZZCQMzCApm/KTfh69ND+XLVgLG1OT3e+DkYj8OqrgVVE0tOBVavEMRS//W3g1RUgKENC9uvscvNDf0iShGmD24aFfHW9bW0FlBvLulZYzGZg6FDxmMNC1A0wsBB1hro6MUQBuAcWwK/AorxwZWcmIcEc7XU/r4IxzKF+fkcqLOfPA9+KZmp47TXgyBFg9uzAjzd7tjjG2LHi4+gAro9akIaEnI6lkV9t+vfuFb1sEhOBIUPcP8+Jt9SNMLAQdYavvxbzCFJTgZQU988rgcXH0mb7cNBQ7cNBAIJfYelIYPngA7GUeeBA4K67OlYNUaSnO0LPO+907FjBCCzKdW5qEsN9Gk0elIwog4QjVfU4WlXneSfl5yU7231YDGDHW+pWGFiIOoO34SCFElj27fMYBJpbbdh2UMxlUIYKNAtWhUWZ1/HVV4GvxFECxY03Bncy6PXXi/fbtgHl5YEdw2ZzhLsAhnPs1MEwgOP0MEUhO1Pc0dnrsJC3+SsKrhSiboSBhagzeFshpEhNBTIyRBVGmZOgsvPoGdQ3W5Hcw4QRaQFOBA1WheX4cfF+5UrRUVVrz5OmJuCf/xSPb7yxY+fi6oILgEmTxON//COwY6xY4XicnR14T5eYGEdDuwCDj1JN8zos5Nrh1pUSWA4cEMOSRF0YAwtRZ/C2QkjNxzwW5QVr2uBkGFy7wPkrGBWWY8eAzZsdHwfS8+Tjj8W59OvnvTLQEUoI2rBB+3OPHQMeftjxcUd7unRw+Eyppm07WIXmVpel2w0NYqgR8B5YlCFIWQa++SagcyDSCwYWolCz2RzLlf0JLB7msWz+Tty5N+D5K0BwKiwHDrjfDVnpeeIvZTjohhs8z7voqBtuEO8/+cTR+t9fvnq6BKIDK4UAYERaIpJ7mFDfbMXOoy7fS0mJWCXUt6+oznnDYSHqJhhYiELt4EFRjjebPa/kUHipsJyqacS+8hpIEnDpoOTAzyMYFZaO9jyxWh1DNcEeDlIMGgSMGiVezJWhJy3PddWRni4drLAYDBKmDRH/5m7DQurhIF/zgLhSiLoJBhaiUFNeKEaOBKJ8dCwdP168P3IEOO14cdp8QFRXLr7Agt49vHfBbVcwKixKzxP1C6SW/ilbtwKVlUCvXsC0aYGfR3uUKovW1UKuwyYd6Q8DdLjCAjiWNytVNrv2JtwquFKIugkGFqJQa2+FkMJicTT62rnTvrkj3W2dBGuV0OzZIngoocXb/AlPlADx4x/7Dm8dpVRvNm3SFhb+8Afx/p57xJBSR/vDBGEJ+KWDkiFJwL7yGpysUd3Vur0Jtwp1hcV1uIuoC2FgIQq19lYIqbnMY7HaZGw5EKTAEqxVQgAweTLw05+Kx8qLfHtk2Xk5cyhdfLHo8dLYKHq++KO4GPj3v0VV5fHHgcsv73h/mCBUWHr3MGHUBRYAquXN584B+/eLx+0FlqFDxf2p6uqAQ4cCPg+icGNgIQo1f1YIKVzmsXx9vBrn6luQYI7CmIyegZ9DS4tYTgx0vMKi+OUvxfs333QsdfZl506x2iY+HrjqquCcgzeS5AhF/g4LKcHr5puB/v2Dcx7BaLIH9d2b24aFdu0S7wcMAJLbmdcUFSWGIwEOC1GXxsBCFEpnzgBlZeLxqFHt76/MR9ixA5Bl/HO3uGlddmYSoowd+O+q/gs/GBUWQISrqVPF5NaXX25/fyU4XHONmIAcakpg+ec/HWHNm7IyoKBAPP7FL4J3DkGosACO6trH357EsbP1/s9fUXClEHUDDCxEoaT8RZuVJeaotGfMGPEX8alTKNhUgte2HgYAfLb/NAp2lAZ+Hspf+OpmZsGgVFleecV3FUGWgfXrxeNQDwcpLrlE9HqprRVDPb689JIIXldcIZrFBUuQKizfnRTPr2uyYuoLn6Dg23PiE/7OH+JKIeoGGFiIQknLcBAgKg8XX4wTCb3x6KeOYRYZwGPvfIPy6obAzkP5C99kCrwJmifXXiuWaldX++4Iu3ev6HESEwP86EfB+/q+GAz+rRaqqRErn4DgVlcAR4Xlu+8Cvu7l1Q14/B+O1UuyDCzsOwXlCb39DyxcKUTdAAMLUSgpJXh/Jty2OT9hEh659heQ4dxbwyrLOFJZH9h5/O1v4n1tbWDt9L0xGIAFC8TjZctElcITpetsbm7w5tD4Q6nmbNwoesB48tprIrQMHw7MmBHcr79nj3j/r38FfN0PV9bB5tKrz2YwoHDoFGDcOP8OogxHlpZqb6ZHpBMMLEShpLHC8v2pWszsOx1f9h/l1lHWKEkYkByn/RyOHQMWL3Z83NF2865uv11M/Dx61DHs46qzVge5mjZN9HyprBRLsV21tIigBYjgFczOu8eOOebFAAFf96zkeHi6G8PvrpiNVcWnILt2HvakZ08RmABH12WiLoaBhShUWlrEUAjgV2D5539P4Md//BwHW6KQWluJ+7/aCGPbC5VRkvDcjSORZonVfh7BbjfvKjYWmDdPPP79791b9x8+LJYMG43AddcF52v6KyoKmDlTPPY0LPT222LCbd++wG23BfdrB+M2BgDSLLHIv/FiGNv63hggY9zxfbAZjHiu8Fvc/39fobaxpf0DcViIujgGFqJQ+fZboLkZSEwUy0+9aLHa8Mx7ezHvzWLUN1uRk9UL/1z3a/z6o9ew9Sf9sfaeSdj66BXImxDgUtvTHu7025F2857MnSvm3+zcCWzZ4vw5ZTho2rT2l+CGgnoeizpAyLJjKfODDwZ/5VJHb2OgkjehP7Y+egXW3jMJn+95Hev/71d4NqkK0UYJH+ypwMw/fm6fmOsVJ95SF8fAQhQq6g63Hu71Ul7dgML/nsBNK7fhz5+L1UBzLhuIv949EcnDxYta2t5i5AzsHVhlBRBzSn77W/FYOYeOtpv3pE8f4I47xOPf/975c+EaDlJcdZXo/XLsmFMHYXz6KfDVV6JCdP/9wf+6ym0M1KHloYcCvu5plljkXNgLads+hQRg1pXD8dZ9OUizmHGosg4z//g53t19AuXVDdh2sNJ9gjaXNlMXx8BCFCo+5q8U7CjF5MUfY+6bxdh9rBqmKANenZWNR2cME/1W1P1YOmLVKuDrr4GkJHE+wWg3780jj4hQ9N57oroEAOXlwLZt4vH11wf/a/rDbBa9XwDnYSElWP3850Dv3qH52rNni7k9P/mJ+PiDD8RQYaAOHxaTZmNigFGjMLZ/Ev754KWYMqg3GlqseGhtMSbnf4xb//Qlpiz+2HkpvPJzuGdPx86BKEwYWIhCxUtL/rIzdXh0/ddOoxMtVhtGpav6tLi06A9IVZVoMQ8Azz4r2tUHo928N0OHOuaoLFki3m/cKIZeJk4M3df1h1LdWb9enM/evUBhoQhYjzwS2q+dni5WIvXpA+zbByxfHvixlJ+H0aPFEnWI1v1v3DURd+SISbXKj5VNdlkKn5UlVmg1Nzva+hN1IQwsRKEgyx5veniksg4/X7MDrus6bDKclywrgaWkRLzABOKJJ4CzZ0VQue++wI6hldJI7o03gFOnwj8cpPjRj0RV4sABEVaUQHX99cGdy+NNz57A734nHj/1lLg2gfByw0OjQcL0kaluu4ul8HXiA4PBsbyZw0LUBTGwEIVCeblYSmswABddBFmW8bcvj2LGi1vw/ak6t93dliwPHCiGcZqbxZCOVv/9r+g+CwAvvhjaOyOrXXqpGM5qahJzZz75RGxXJr6GS0KC6AEDACtWAH/9q3isBKzOcNddom9KdTWwaFFgx/Bxh2Zvy59f+vcBnKptu8szJ95SF8bAQhQKygvCsGE41SrhrjU7sGjDN2hosSLnwt54dMYw+zJVj0uWJcnxovR//6etd4csAw8/LJYy33STaDffWSTJ0S325ZfFpN9hw8SKmXBTqjwrVoggOHasuOt0ZzEaxS0AANFATrmBob+OHHEMCXm4h5Dr8mdJEpWX7YfOYPrSzfjgm3IubaYuTZL96jqkfzU1NbBYLKiurkZiYmK4T4e6qfLqBhyurENWcrzvlTv5+cBjj+GDu/4XCzN/gLP1LYiJMuB/pw/FXVOyYDBIKK9uwJHKegxIjvN8rGuvFR1SAVGpWbXKv8myb78t7jhsNovJr0rDsM7S2gqkpoo5NIB45fzTn0Iz0VeLykrRb0X5lReu8/qf/xF3uJ48WTSz87CCzM3q1cC99zr66axaBdxzj8dd1T9XtY2tmL+uBHvLawAAP+lvwpOPzESiJR44ebLdr+33zztRB/j7+s3AQuSngh2lWPjO17DJgEECnrvhYvzsEvfeKOXVDdjz8ONYfzYa7w+fCgAYkZaIZT8bgyEpfralP3YM6N/fuW+I0Sj+yvY1ebW+XrSYLy0FnnxSzJfobIGee6gdOwZkZDhvC8d5HT8uJijX1Ynq2f/8j+/9jx0ToVPd/E/DeTe32rDso+/wymcHYZOBC6pP4bGPX0PSX19H1tAMj0GkqdWKN7YdRf77++w/7/k3Xhx4LyAiHxhYiILoaFUdLv9/n7pNlk2Ki0bvHiYkxUWjZ1wMztU1Y+fRs/b9JAD3Xz4Q8384BDFRGkZgP/kEuPJKz9svv9z7855+WoSUjAxRXYkLoJV/RwV67qGmp/N67jkxj6VfP7FiR7lJoifvv+/5hpEaz3vnkTNY8NZulJ6pF2FSkiABGJVuQWJsNM7UNeNcfQvO1jejvtn9vktGScLWR69gpYWCzt/Xb85hoe7v2DHxyz3Ae+fsOVGN21770i2sAMDZ+hZ8f+o8dhw5i6K9J7FDFVYAUXGflZOpLawAnrukAmL1TXW15+ccPeq4Z9Af/hCesAIEtcNrUOnpvBYsAC68EDhxQgwfevPPf4qhIFcBnPf4Ab3w5zsn2MMKIJZA7z5WjS0HKrHnRA2On2vwGFYAseLo0Gn3CeN+6eD/QSKAgYW6u9WrRTn9yis13y231WrDy/8+gJl//BxlZxvcPm+QgDd+fgnevHsilt86DndNGeC2j9tyZX8pXVKNRvGxMtfg9dfFkE9Bgft9an71K6CxEbjsMjHZNlxczz0UnXW7+nmZzY6l1b//PXDwoPPnS0vFyqrrrhMv8klJjrDVgfM+Vdvocd7K3MsH4vU7J2DD3Mn49JeX48P50zyuOMov3IfDlRpDSwf+DxKpcUiIuq8OjP1/f+o8fvH2buwuOwcAmH5RCiYM6IX8wm9hlWX7yh71mH55dQOmLP4YNvXUjY6W0Y8dEzfLGzRINB174AHRSwQQLeeXLxet5d9+23G34eJiR7+NcFKfe7jDippezkuWgenTgaIiseT60UfFPaf+/ncxrFdfL5ajL1jg6KnTwfMur27AlPyPob4Vpref0YIdpXjsnW9glWVIEhBjNKCp1YbYaCMW/mgYbpuYCYOnVKPWwfk3FBk4h4UiW2OjKKUr/TbU/vQn4O67nTYpqyEye8Vh056TeP6Db9HUakOCOQrPzLwI14+5AJLU/sqegiVv4rGKHrAajDDarHgu9TzyFtwa3O/rhRfEHIimJvHL32ZzVFsuv9zR+4T0b98+YORI97tpA8DUqWIJ9siRQf2SBb99DY/V9PXrZ1T9826TgV+9vRvbDorVX5cOSsYLN42CJMHzSqK6OmD+fNHl19Xq1aIvDREYWMJ9OhROn3wCzJkDfPed931uuUVMUB082Gn1j9rUweIXst/VkUOHgEGDUN6jF4707IcB504grf5caP6a/P57Ebo++8x5O/967Vo8ragCxBwk5d5Mwf56mZkoj08K6GfUZpPx1y/E6qHGFhtMUQY0t9ogQ7WSaHSq+KPgt78FKio8H8hoFEOYTzwhKoQU0UI66XbFihXIysqC2WxGdnY2trjeTt7FZ599huzsbJjNZlx44YV4RenAqbJ+/XqMGDECJpMJI0aMwAbllvRE/qqqEjeyu/JKEVZSU4E5c1Bu6Ytt/S9GeWIfezO2hrffwZ5pP8JfHnwOj653Dyu/mj4Ub9x1iX9h5ZtvRNl+7FhAlpFWW4Wcsq+RVlsFWK0iXATboEHil72rUH09Co0DB9zDCiA64gY7rChfz2Zz/xm9/noxL6qx0efTDQYJd0wegMKHpuKifoloagsrgJiv9ej6/+K9H96Ck48+AbmiQty/aPZsx/9BS1/x/8RqFRPER44UQ2JEftBcYSkoKMCsWbOwYsUKTJkyBa+++ipee+017N27F/37u6/RP3z4MEaOHIl77rkH9913Hz7//HPMnTsXa9euxU/a7mC6fft2TJ06Fc8++yxuuOEGbNiwAU888QS2bt2KiRMn+nVeoaqwlH97CIe/OYSskRcibdiFHdovWPvo9VjhO/eDyCrdj7T8p0VzMEmCbc4cVD3+NP665wxe/vf3kCGWGA/s2wP15xtwot7zSgjF2nsmIWeghzv4Hjsmfun37Qts2QL8+c++76gcyooH5wd0fZ39b+jp66klJYm+MHfdJYKF8vM+eLDb+Ww9UInbVn/p9UvFSzZcmGaB0WjA7rJq+//BX00firvO7oH5oQdETxpAfM0lS1B+5rzufs/wd7K2YwUiZENCEydOxLhx47By5Ur7tuHDh+P6669Hvofleb/+9a/x7rvvYt++ffZtc+bMwe7du7F9+3YAQF5eHmpqavD+++/b97n66quRlJSEtWvX+nVeoQgsBUvexMKKBNgMBhhsNuSn1noc6/Vnv2Dto9djdeTr/XT+LahrbkVtYyvON7Viw5pCvHImDrJkgCTb8DNLIyb9aDJssgybDbDJMmQZ+PLDL/BOjRmyZABkGcNPHUa0KRqnUvvjdDNgdS2buEiKlpBedRxfJ6Q5/TVrtFmxddcrSEtOAHr1Em9JScCePcBf/uL+F3FUFPDjH4tf8sePA3Pnir8gldUcoeykunq1uLFhZ309Cr7O/jd0/Xq//S3Q0CBWoJWVOfbLyBCBRVkG/eMfi4rJmTPAmTMoP1OHKVMegU29VFyWkSE14oQUB2s7Ly0JJiNSGqrRt+wg+p4/g7M9krC5/yj7//ufJDZi0tU5MEiAQZJgMEj44l+fY2212b7Pg73q8JO7r0OCORo9TFH29gF6+L0W7mOF49wDFZLA0tzcjLi4OLz99tu4QXUzs4cffhglJSX4zHU8HcC0adMwduxYvPjii/ZtGzZswM0334z6+npER0ejf//+eOSRR/CI6jbvS5cuxbJly3D06FGP59LU1ISmpianbzgjIyNogaX820OY8uc9Tv8ZJdmGnzYeRXy0Y1tdiw1vmwdAVr3gSbINNzUeRXy0sW0fK/7ekX3sPTxk1LXK7e5X12rzuM8NjaWIa/t6MoD6Fhs2mPs7vVhLsowfN5YiLkpsq2+1YaM5022fq8/sR6xshWy1oc4GfJg60rmELcuYfPo7RBsMsBmNsBqMqDdEo6RHmtt+4qAhKH978fSPR+DHoy9AUnwM8PHHKHhkMR6bPs8xCXHTH5H3Xz/L1E88AcybB/Tp49jW2atQ9LLqhQKnh58ZqxX4979F1fCdd4CWlnYPUzDqKvf/Oy8+huZLp6H0TB0Kv67AkiIfc8mCzGRrRZytBWeNZrffM+PPlSLO1gKjtRUtNhlbU4a5/V7LrdiDOCMgGY1oNBhR2HOwz9+PgNT2O9L196gN1zeWIj7aCAky6lps2GDObOf3u/ff3f78ftf6muNrP/XrnKfXOKPNiq13jQxapSUkgeXEiRO44IIL8Pnnn2Oy6qZhzz33HP7yl79g//79bs8ZMmQI7rzzTjz22GP2bdu2bcOUKVNw4sQJpKWlISYmBmvWrMGttzoS25tvvomf//znTqFE7amnnsLTTz/ttj1YgWXb3z/CrTs9f20KjShrK8wtjThvdu/6ObLieyQ11MAg22CQZZwz90DxBcPd9vvl4GhMm34J+iaY0WK14rL/96nvZcaeJiHWnQWWLhW/gNr+msTevcBHH7mfdLi7txKFwsaNYl6Lq1tuEUNFvXqJYaU5c3xO4PW81B94v63Py6maJpysbcSOLV/jzRPuw1Sjj+9HYnMdZEnCWXMC9qS6N8sztTShKdoUnO+b/LZ2ghk5P/lBUI7lb2AJ6J7zkstfw7Isu21rb3/X7VqPuXDhQixYsMD+sVJhCZaskRfC8B/3CsvtLaXoYXJctvNNrXgj2j05q/fryD53tLp8vWYr/mLs77bfndYy9Igx2o+1Jsr9WHe2HkViTJT9D4Hzja1YHe2eru9pPYoEcxQkALVNrVhlzBTDLqp95sadgSWpBwzR0ahtaMZLJ01u+zx6QTN6J8TC2NoCQ2sras5U44maPk77GWxWbDTtw6CeMTDLNlScrcOUlrFO191os+JP2bFIyxooVhTExaH8dA2mbG122+8nU4YjLb2nfVv+jRfbe0l4vCtyWzOxtPvuExMQjUbPNxn0Ntcg3N1biUIhO1v09HH9eX/hBecKkMHg/H/HpaGdcgdp1/+Dyj21BvUV7yfFNmOdS0XbaLPilRn9kdarB1Bfj/Kj5ZhSbnPb59PYPeiTFI/zMKJWNuBQdTPubB7i/PvIZsOTydVI6N0T1qgonK1pwOJjUW6/sx5MbkBCbAzklhacqz6PlQ3Jbvvcaz2KBFOUfbJxbWMr/hTl/jvyrpaj9t/dNc2tWBPl/rv2Tvvvd7H9fHMr1nj4/X5Haxl6mIyALPb5i4ff71pfc/zdz9M+RpsVAy7KQmfTFFiSk5NhNBpR4bJU7dSpU0hJSfH4nNTUVI/7R0VFoXfv3j738XZMADCZTDCZQpeq04ZdiPzULzz01HjAbd8RHntvPBCSfQBguMf95jrtM8zjPvPcjjXYj/0u9LjPHU779PO0z0PuY5wxHva7eMGvHdcdQL6HfdIedG5PngYg/3sP+7mUKPMm9Me0IX183xV59mzRwMtXSV7pkuo614BDMNQd+fvz7sf/HX/+D3r7fZumqrp7/d2w4DcAgJ5tbxkAFnv8nXWb09fs6UfPpEw/f48O9GM/z7+T3X+/e97P+fe759eAwF5PAn1tCvbEW38ENOk2OzsbK1assG8bMWIEZs6c6XXS7XvvvYe9e/fat91///0oKSlxmnRbW1uLwsJC+z4zZsxAz549wzrpFhBzWY7sOYwBF2W1O8u6vf2CtY9ej6XXcw8qzhehSNLJP+96/D2j199revx6gfL79VvWaN26dXJ0dLS8evVqee/evfL8+fPl+Ph4+ciRI7Isy/Kjjz4qz5o1y77/oUOH5Li4OPmRRx6R9+7dK69evVqOjo6W//73v9v3+fzzz2Wj0SgvXrxY3rdvn7x48WI5KipK/uKLL/w+r+rqahmAXF1drfVbIiIiojDx9/Vb8xyWvLw8VFVV4ZlnnkF5eTlGjhyJwsJCZGZmAgDKy8tRWlpq3z8rKwuFhYV45JFHsHz5cvTr1w8vvfSSvQcLAEyePBnr1q3D448/jt/85jcYOHAgCgoK/O7BQkRERN0bW/MTERFR2IS0NT8RERFRZ2JgISIiIt1jYCEiIiLdY2AhIiIi3WNgISIiIt1jYCEiIiLdY2AhIiIi3WNgISIiIt1jYCEiIiLd09yaX6+Uhr01NTVhPhMiIiLyl/K63V7j/W4TWGprawEAGRkZYT4TIiIi0qq2thYWi8Xr57vNvYRsNhtOnDiBhIQESJIU7tMJuZqaGmRkZKCsrIz3TupEvO7hweseHrzu4RFp112WZdTW1qJfv34wGLzPVOk2FRaDwYD09PRwn0anS0xMjIgfaL3hdQ8PXvfw4HUPj0i67r4qKwpOuiUiIiLdY2AhIiIi3WNg6aJMJhOefPJJmEymcJ9KROF1Dw9e9/DgdQ8PXnfPus2kWyIiIuq+WGEhIiIi3WNgISIiIt1jYCEiIiLdY2AhIiIi3WNg6WKOHDmC2bNnIysrC7GxsRg4cCCefPJJNDc3O+1XWlqK6667DvHx8UhOTsZDDz3ktg9p87vf/Q6TJ09GXFwcevbs6XEfXvfgW7FiBbKysmA2m5GdnY0tW7aE+5S6lc2bN+O6665Dv379IEkS/vGPfzh9XpZlPPXUU+jXrx9iY2Nx+eWXY8+ePeE52W4kPz8fEyZMQEJCAvr27Yvrr78e+/fvd9qH194ZA0sX8+2338Jms+HVV1/Fnj17sHTpUrzyyit47LHH7PtYrVZcc801qKurw9atW7Fu3TqsX78ev/jFL8J45l1fc3MzfvrTn+L+++/3+Hle9+ArKCjA/PnzsWjRIhQXF2Pq1KmYMWMGSktLw31q3UZdXR1Gjx6NP/7xjx4//8ILL2DJkiX44x//iB07diA1NRVXXXWV/f5tFJjPPvsMDzzwAL744gsUFRWhtbUVubm5qKurs+/Da+9Cpi7vhRdekLOysuwfFxYWygaDQT5+/Lh929q1a2WTySRXV1eH4xS7lddff122WCxu23ndg++SSy6R58yZ47Rt2LBh8qOPPhqmM+reAMgbNmywf2yz2eTU1FR58eLF9m2NjY2yxWKRX3nllTCcYfd16tQpGYD82WefybLMa+8JKyzdQHV1NXr16mX/ePv27Rg5ciT69etn3zZ9+nQ0NTVh165d4TjFiMDrHlzNzc3YtWsXcnNznbbn5uZi27ZtYTqryHL48GFUVFQ4/RuYTCZcdtll/DcIsurqagCw/y7ntXfHwNLFHTx4EC+//DLmzJlj31ZRUYGUlBSn/ZKSkhATE4OKiorOPsWIweseXJWVlbBarW7XNCUlhdezkyjXmf8GoSXLMhYsWIBLL70UI0eOBMBr7wkDi0489dRTkCTJ59vOnTudnnPixAlcffXV+OlPf4q7777b6XOSJLl9DVmWPW6PZIFcd1943YPP9drxenY+/huE1rx58/Df//4Xa9eudfscr71DVLhPgIR58+bhZz/7mc99BgwYYH984sQJXHHFFcjJycGqVauc9ktNTcWXX37ptO3s2bNoaWlxS+uRTut194XXPbiSk5NhNBrd/po8deoUr2cnSU1NBSD+2k9LS7Nv579B8Dz44IN49913sXnzZqSnp9u389q7Y2DRieTkZCQnJ/u17/Hjx3HFFVcgOzsbr7/+OgwG50JZTk4Ofve736G8vNz+g/7hhx/CZDIhOzs76OfelWm57u3hdQ+umJgYZGdno6ioCDfccIN9e1FREWbOnBnGM4scWVlZSE1NRVFREcaOHQtAzC367LPP8Pzzz4f57Lo2WZbx4IMPYsOGDfj000+RlZXl9Hleew/COOGXAnD8+HF50KBB8pVXXikfO3ZMLi8vt78pWltb5ZEjR8o/+MEP5K+++kr+6KOP5PT0dHnevHlhPPOu7+jRo3JxcbH89NNPyz169JCLi4vl4uJiuba2VpZlXvdQWLdunRwdHS2vXr1a3rt3rzx//nw5Pj5ePnLkSLhPrduora21/ywDkJcsWSIXFxfLR48elWVZlhcvXixbLBb5nXfekb/++mv5lltukdPS0uSampown3nXdv/998sWi0X+9NNPnX6P19fX2/fhtXfGwNLFvP766zIAj29qR48ela+55ho5NjZW7tWrlzxv3jy5sbExTGfdPdxxxx0er/snn3xi34fXPfiWL18uZ2ZmyjExMfK4cePsyz4pOD755BOPP9d33HGHLMtiee2TTz4pp6amyiaTSZ42bZr89ddfh/ekuwFvv8dff/11+z689s4kWZblTizoEBEREWnGVUJERESkewwsREREpHsMLERERKR7DCxERESkewwsREREpHsMLERERKR7DCxERESkewwsREREpHsMLERERKR7DCxERESkewwsREREpHsMLERERKR7/x+Iwx4uYFhqPAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgLElEQVR4nO3deXhU5dk/8O+ZJZM9hASykBXCniAQXAARrRILahVtxdqqbaGKqbbI668v1PZVfK10tfS9KoiVlqrV0tat1VRJXVgErYawBmQLhCQTQgLZk5nJzPn9cXImM5lJMjM5M2eW7+e6cmXmzJlznjk5mbnnfu7nOYIoiiKIiIiIVKJRuwFEREQU2RiMEBERkaoYjBAREZGqGIwQERGRqhiMEBERkaoYjBAREZGqGIwQERGRqhiMEBERkap0ajfAEzabDfX19UhISIAgCGo3h4iIiDwgiiLa29uRmZkJjWbw/EdIBCP19fXIzs5WuxlERETkg3PnziErK2vQx0MiGElISAAgvZjExESVW+N/FosF27dvR0lJCfR6vdrNiRg87urgcVcHj7s6Iu24t7W1ITs72/45PpiQCEbkrpnExMSICUZiY2ORmJgYESdrsOBxVwePuzp43NURqcd9uBILFrASERGRqhiMEBERkaoYjBAREZGqGIwQERGRqhiMEBERkaoYjBAREZGqGIwQERGRqhiMEBERkaoYjBAREZGqGIwQERGRqhiMEJG6amuReugQUFurdkuISCUMRohIPVu2QFdQgPk/+Ql0BQXAli1qt4iIVMBghIjUUVsL3H8/BJsNAKTfDzzADAlRBGIwQkTqOHEC6AtE7KxW4ORJddpDRKrxKRjZuHEj8vPzER0djeLiYuzatWvI9U0mEx577DHk5ubCYDBgwoQJ+MMf/uBTg4koTEycCGgGvAVptUBBgTrtISLV6Lx9wrZt27Bq1Sps3LgR8+fPx+bNm7F48WJUVVUhJyfH7XPuvPNOnD9/Hlu2bEFBQQEaGxvR29s74sYTUQjLygIefBB49lkAgKjVQti8WVpORBHF62DkmWeewfLly7FixQoAwIYNG/Dee+9h06ZNWL9+vcv67777Lnbs2IHTp09j9OjRAIC8vLyRtZqIwsMVV9iDkd59+6CfMUPlBhGRGrwKRsxmMyoqKrBmzRqn5SUlJdizZ4/b5/zjH//AnDlz8Itf/AIvvfQS4uLi8JWvfAX/+7//i5iYGLfPMZlMMJlM9vttbW0AAIvFAovF4k2TQ5L8GiPhtQYTHvfA01y6BG3f7d7oaIDHPmB4vqsj0o67p6/Tq2CkqakJVqsVaWlpTsvT0tLQ0NDg9jmnT5/G7t27ER0djTfeeANNTU0oLS3FxYsXB60bWb9+PdatW+eyfPv27YiNjfWmySGtvLxc7SZEJB73wJn02WeY2nd777vvoj03V9X2RCKe7+qIlOPe1dXl0Xped9MAgCAITvdFUXRZJrPZbBAEAX/+85+RlJQEQOrq+epXv4pnn33WbXZk7dq1WL16tf1+W1sbsrOzUVJSgsTERF+aHFIsFgvKy8uxaNEi6PV6tZsTMXjcA0/jUPw+r7AQ2gULVGxNZOH5ro5IO+5yz8ZwvApGUlNTodVqXbIgjY2NLtkSWUZGBsaNG2cPRABg6tSpEEURtbW1mDhxostzDAYDDAaDy3K9Xh8RfzxZpL3eYMHjHkCdnfabuq4u6HjcA47nuzoi5bh7+hq9GtobFRWF4uJil/RSeXk55s2b5/Y58+fPR319PTo6OuzLjh8/Do1GgyxWzRNFttZW97eJKKJ4Pc/I6tWr8cILL+APf/gDjh49ikceeQQ1NTVYuXIlAKmL5d5777Wvf/fddyMlJQXf/va3UVVVhZ07d+L//b//h+985zuDFrASUYRwTOG2t6vXDiJSldc1I8uWLUNzczOefPJJGI1GFBYWoqysDLl9hWdGoxE1NTX29ePj41FeXo6HH34Yc+bMQUpKCu6880489dRTyr0KIgpNDtkQgZkRoojlUwFraWkpSktL3T62detWl2VTpkyJmMphIvKCY2bEw0I3Igo/vDYNEamH3TREBAYjRKQmdtMQERiMEJFaRJHdNEQEgMEIEamlqwuwWvvvMxghilgMRohIHQODDwYjRBGLwQgRqWNA8CEwGCGKWAxGiEgdAwtWGYwQRSwGI0Skjr7gQ4yLc7pPRJGHwQgRqUMOPvquUSV0dQG9vSo2iIjUwmCEiNTR100jOl4wk9kRoojEYISI1CEHHikp6I2Kcl5GRBGFwQgRqUPOjCQmojc21mkZEUUWBiNEpA45C+IYjDAzQhSRGIwQkTocghELgxGiiMZghIjUIXfJJCaiNybGeRkRRRQGI0SkDnmekcREWDjXCFFEYzBCROpwrBmRMyMMRogiEoMRIlKHYzcNR9MQRTQGI0SkDjkLkpTEAlaiCMdghIjUIc8zkpDAzAhRhGMwQkSBZ7MB7e3SbWZGiCIegxEiCrzOTkAUpduc9Iwo4jEYIaLAk7tjdDogOhoWzjNCFNEYjBBR4DkUr0IQ0Mt5RogiGoMRIgo8hzlGAPRnRhiMEEUkBiNEFHgOc4wA4GgaogjHYISIAs+xmwboH01jMkk/RBRRGIwQUeANzIzI3TQAu2qIIhCDESIKvAGZEWi1EFnEShSxGIwQUeANKGAF0B+YMBghijgMRogo8AZ00wAAEhKcHyOiiMFghIgCb2A3DQCRmRGiiMVghIgCz103jXybwQhRxGEwQkSBx24aInLAYISIAs9NNw0LWIkiF4MRIgo8N5kRUb7NzAhRxGEwQkSB5y4zInfTMDNCFHEYjBBR4HGeESJywGCEiALLagU6OqTb7KYhIjAYIaJAa2/vv82hvUQEBiNEFGhysGEwSD8yBiNEEYvBCBEFlrs5Rhzvs5uGKOIwGCGiwHI3kgYONSPMjBBFHAYjRBRYnmRGRDGwbSIiVfkUjGzcuBH5+fmIjo5GcXExdu3aNei6H330EQRBcPk5duyYz40mohA2SGbEHoz09gI9PYFtExGpyutgZNu2bVi1ahUee+wxVFZWYsGCBVi8eDFqamqGfN4XX3wBo9Fo/5k4caLPjSaiEOZujhEAiI8HBMF5HSKKCF4HI8888wyWL1+OFStWYOrUqdiwYQOys7OxadOmIZ83duxYpKen23+0Wq3PjSaiEDZYN41Gw4vlEUUonTcrm81mVFRUYM2aNU7LS0pKsGfPniGfO2vWLPT09GDatGn48Y9/jOuuu27QdU0mE0wmk/1+W9+3JIvFAovF4k2TQ5L8GiPhtQYTHvfA0Fy6BC0Aa0ICbA7/0xaLBbqkJAhtbei9eBEi/w5+xfNdHZF23D19nV4FI01NTbBarUhLS3NanpaWhoaGBrfPycjIwPPPP4/i4mKYTCa89NJLuP766/HRRx/hmmuucfuc9evXY926dS7Lt2/fjtjYWG+aHNLKy8vVbkJE4nH3r8JDhzABwKnGRhwtK7MvLy8vx3WCgEQAn5aXo+n8edXaGEl4vqsjUo57V1eXR+t5FYzIBLlft48oii7LZJMnT8bkyZPt9+fOnYtz587hV7/61aDByNq1a7F69Wr7/ba2NmRnZ6OkpASJA1O7YchisaC8vByLFi2CXq9XuzkRg8c9MLSvvQYAmDBrFvKXLHE67tGZmUBNDa6cMgXikiUqtzS88XxXR6Qd9zYP67+8CkZSU1Oh1WpdsiCNjY0u2ZKhXHXVVXj55ZcHfdxgMMDgODNjH71eHxF/PFmkvd5gwePuZ33XpdGOHg2tw3HW6/XQjBoFANB1dQH8GwQEz3d1RMpx9/Q1elXAGhUVheLiYpf0Unl5OebNm+fxdiorK5GRkeHNrokoXAxWwOq4jAWsRBHF626a1atX45577sGcOXMwd+5cPP/886ipqcHKlSsBSF0sdXV1ePHFFwEAGzZsQF5eHqZPnw6z2YyXX34Zr732Gl7rS9USUYQZbJ4RgNenIYpQXgcjy5YtQ3NzM5588kkYjUYUFhairKwMubm5AACj0eg054jZbMajjz6Kuro6xMTEYPr06XjnnXewhP3BRJFpsHlGgP4AhcEIUUTxqYC1tLQUpaWlbh/bunWr0/0f/vCH+OEPf+jLbogoHLGbhogG4LVpiCiwhuqmYWaEKCIxGCGiwLFYgO5u6fZQmREGI0QRhcEIEQWOY5AhT/3uiN00RBGJwQgRBY4cjMTGup9HhN00RBGJwQgRBc5QxauOy5kZIYooDEaIKHCGKl4FWDNCFKEYjBBR4Aw1xwjg3E0jioFpExGpjsEIEQWOp900NhvQ2RmYNhGR6hiMEFHgDNdNExsLaLXO6xJR2GMwQkSBM1w3jSCwboQoAjEYIaLAGa6bxvExjqghihgMRogocIbrpnF8jJkRoojBYISIAoeZESJyg8EIEQWOJ5kR1owQRRwGI0QUOMMVsALspiGKQAxGiChw2E1DRG4wGCGiwGEBKxG5wWCEiALHk24a1owQRRwGI0QUOOymISI3GIwQUWCYTIDZLN1mNw0ROWAwQkSB4ZjpiI8ffD1mRogiDoMRIgoMOdORkNB/MTx3WDNCFHEYjBBRYHhSvAqwm4YoAjEYIaLA8KR41fFxdtMQRQwGI0QUGJ7MMeL4eHs7YLP5t01EFBQYjBBRYHjaTeP4eEeH/9pDREGDwQgRBYan3TQGA6DXOz+HiMIagxEiCgxPu2kEgUWsRBGGwQgRBYanmRHHdZgZIYoIDEaIKDA8zYwAnGuEKMIwGCGiwPC0gBVgNw1RhGEwQkSBwW4aIhoEgxEiCgx20xDRIBiMEFFgsJuGiAbBYISIAoPdNEQ0CAYjRBQY3nTTMDNCFFEYjBCR/4kiMyNENCgGI0Tkf93dgNUq3WYBKxENwGCEiPxPDioEAYiLG359dtMQRRQGI0Tkf45dNIIw/PrspiGKKAxGiMj/vCleBdhNQxRhGIwQkf95M8cIwG4aogjDYISI/M+bkTSO63V2Ar29/mkTEQUNBiNE5H++dtMAQHu78u0hoqDiUzCyceNG5OfnIzo6GsXFxdi1a5dHz/v444+h0+kwc+ZMX3ZLRKHK28xIVBQQHe38XCIKW14HI9u2bcOqVavw2GOPobKyEgsWLMDixYtRU1Mz5PNaW1tx77334vrrr/e5sUQUorzNjAAsYiWKIF4HI8888wyWL1+OFStWYOrUqdiwYQOys7OxadOmIZ/3wAMP4O6778bcuXN9biwRhShvC1gBFrESRRCvghGz2YyKigqUlJQ4LS8pKcGePXsGfd4f//hHnDp1Co8//rhvrSSi0OZtN43juuymIQp7Om9WbmpqgtVqRVpamtPytLQ0NDQ0uH3OiRMnsGbNGuzatQs6nWe7M5lMMJlM9vttfd+MLBYLLBaLN00OSfJrjITXGkx43P1H29ICDQBrfDxsA47vYMddm5AADYDeixch8m+iOJ7v6oi04+7p6/QqGJEJA2ZQFEXRZRkAWK1W3H333Vi3bh0mTZrk8fbXr1+PdevWuSzfvn07YmNjvW9wiCovL1e7CRGJx115V506hTQAB6qrca6szO06A4/7Fd3dyABweO9enPUmo0Je4fmujkg57l1dXR6tJ4iiKHq6UbPZjNjYWPztb3/D0qVL7ct/8IMfYP/+/dixY4fT+i0tLUhOToZWq7Uvs9lsEEURWq0W27dvx5e+9CWX/bjLjGRnZ6OpqQmJEfCmZLFYUF5ejkWLFkGv16vdnIjB4+4/2oULodm7F71//SvE225zemyw4679znegefllWJ9+GrZHHw1wi8Mfz3d1RNpxb2trQ2pqKlpbW4f8/PYqMxIVFYXi4mKUl5c7BSPl5eW49dZbXdZPTEzEoUOHnJZt3LgRH3zwAf7+978jPz/f7X4MBgMMBoPLcr1eHxF/PFmkvd5gwePuB31zhehGjwYGObYuxz05GQCg7eyEln8Pv+H5ro5IOe6evkavu2lWr16Ne+65B3PmzMHcuXPx/PPPo6amBitXrgQArF27FnV1dXjxxReh0WhQWFjo9PyxY8ciOjraZTkRhTEWsBLRELwORpYtW4bm5mY8+eSTMBqNKCwsRFlZGXJzcwEARqNx2DlHiCjCcJ4RIhqCTwWspaWlKC0tdfvY1q1bh3zuE088gSeeeMKX3RJRKBJFzjNCREPitWmIyL86OqSABGA3DRG5xWCEiPxLzmzodEBMjOfPYzcNUcRgMEJE/uXYReNmPqJBsZuGKGIwGCEi/5K7WbwpXgXYTUMUQRiMEJF/+VK8CjAzQhRBGIwQkX/5MseI4/o9PYDZrGybiCioMBghIv/yZY4RAEhIcN0GEYUlBiNE5F++dtPodEBcnPM2iCgsMRghIv/ytZvG8TksYiUKawxGiMi/fO2mATjXCFGEYDBCRP7lazcNwBE1RBGCwQgR+Zev84wA7KYhihAMRojIv5gZIaJhMBghIv9iASsRDYPBCBH5FwtYiWgYDEaIyL/YTUNEw2AwQkT+xW4aIhoGgxEi8h+rFejokG6zm4aIBsFghIj8Rw5EAHbTENGgGIwQkf/I3SsGg/TjLXbTEEUEBiNE5D8jKV4FmBkhihAMRojIf0ZSvOr4PGZGiMIagxEi8p+RzDECOBewiqIybSKioMNghIj8R6luGosFMJmUaRMRBR0GI0TkPyPtpomPd90WEYUdBiNE5D8j7abRaICEBOdtEVHYYTBCRP4z0m4agCNqiCIAgxEi8h+5a8XXzAjAETVEEYDBCBH5DzMjROQBBiNE5D8jLWB1fC4zI0Rhi8EIEfnPSAtYAV4sjygCMBghIv9hNw0ReYDBCBH5D7tpiMgDDEaIyH/YTUNEHmAwQkT+w24aIvIAgxEi8g+LBejqkm5znhEiGgKDESLyj/b2/tvylO6+YDcNUdhjMEJE/iFnMmJiAL3e9+3IWRVmRojCFoMRIvIPJYpXAWZGiCIAgxEi8g8lilcBFrASRQAGI0TkH0rMMeL4/LY2QBRHti0iCkoMRojIP5TuprFa+0fnEFFYYTBCRP6hVDdNXByg0Thvk4jCCoMRIvIPuZtmpJkRQeBcI0RhjsEIEfmHUpkRx20wM0IUlnwKRjZu3Ij8/HxER0ejuLgYu3btGnTd3bt3Y/78+UhJSUFMTAymTJmC3/zmNz43mIhChFIFrADnGiEKczpvn7Bt2zasWrUKGzduxPz587F582YsXrwYVVVVyMnJcVk/Li4ODz30EGbMmIG4uDjs3r0bDzzwAOLi4nD//fcr8iKIKAgpVcAKMDNCFOa8zow888wzWL58OVasWIGpU6diw4YNyM7OxqZNm9yuP2vWLHz961/H9OnTkZeXh29+85u48cYbh8ymEFEYULKbhnONEIU1rzIjZrMZFRUVWLNmjdPykpIS7Nmzx6NtVFZWYs+ePXjqqacGXcdkMsFkMtnvt/W9AVksFlgsFm+aHJLk1xgJrzWY8LgrS9vSAg2A3thYiEMcU0+OuzY+HhoA1osXYePfRxE839URacfd09fpVTDS1NQEq9WKtLQ0p+VpaWloaGgY8rlZWVm4cOECent78cQTT2DFihWDrrt+/XqsW7fOZfn27dsRGxvrTZNDWnl5udpNiEg87spYeO4cRgH47PhxNJaVDbv+UMf9spYW5AE4XlGB4x5sizzH810dkXLcuzycG8jrmhEAEATB6b4oii7LBtq1axc6OjrwySefYM2aNSgoKMDXv/51t+uuXbsWq1evtt9va2tDdnY2SkpKkKhEyjfIWSwWlJeXY9GiRdCP5AJj5BUed2XpHn0UAHD59ddDnDdv0PU8Oe6anTuB7dsxKT0dBUuW+KW9kYbnuzoi7bi3edi16lUwkpqaCq1W65IFaWxsdMmWDJSfnw8AKCoqwvnz5/HEE08MGowYDAYYDAaX5Xq9PiL+eLJIe73BgsddIX0jX3QpKR5dtXfI456cDADQtrdDy7+Noni+qyNSjrunr9GrAtaoqCgUFxe7pJfKy8sxb4hvPgOJouhUE0JEYYjzjBCRh7zuplm9ejXuuecezJkzB3PnzsXzzz+PmpoarFy5EoDUxVJXV4cXX3wRAPDss88iJycHU6ZMASDNO/KrX/0KDz/8sIIvg4iCiskk/QCcZ4SIhuV1MLJs2TI0NzfjySefhNFoRGFhIcrKypCbmwsAMBqNqKmpsa9vs9mwdu1aVFdXQ6fTYcKECfjZz36GBx54QLlXQUTBxTGDkZAw8u0xM0IU1nwqYC0tLUVpaanbx7Zu3ep0/+GHH2YWhCjSyEFDfDyg1Y58e5xnhCis8do0RKQ8JaeCd9wOu2mIwhKDESJSnpJTwQPspiEKcwxGiEh5So6kAfqDmvZ2wGZTZptEFDQYjBCR8uTuFKUzI6IIdHQos00iChoMRohIeUpnRqKjAZ3OedtEFDYYjBCR8pQuYBUEzjVCFMYYjBCR8pQuYAVYxEoUxhiMEJHylO6mATjXCFEYYzBCRMpTupvGcVvspiEKOwxGiEh57KYhIi8wGCEi5bGbhoi8wGCEiJSn9DwjALtpiMIYgxEiUp4/MiPspiEKWwxGiEh5/ihg5TwjRGGLwQgRKUsUWcBKRF5hMEJEyurpAXp7pdssYCUiDzAYISJlyd0oggDExSm3XRawEoUtBiNEpCzH4lWNgm8x7KYhClsMRohIWf4YSQOwm4YojDEYISJl+WOOEYDdNERhjMEIESnLX5kReXudnYDVquy2iUhVDEaISFn+mGNk4PbYVUMUVhiMEJGy/DHHCAAYDNKP4z6IKCwwGCEiZfmrmwZgEStRmGIwQkTK8lc3jeM2WcRKFFYYjBCRsvzVTQNwrhGiMMVghIiUxW4aIvISgxEiUpa/5hkB2E1DFKYYjBCRsvyZGWE3DVFYYjBCRMryZwGrnG1hZoQorDAYISJlsYCViLzEYISIlMVuGiLyEoMRIlKOKAZmNA27aYjCCoMRIlJOZydgs0m32U1DRB5iMEJEypGDBK0WiIlRfvucZ4QoLDEYISLlOM4xIgjKb5/zjBCFJQYjRKQcf9aLOG6XmRGisMJghIiU4885RgAWsBKFKQYjRKQcf84xAvQHOT09gNnsn30QUcAxGCEi5fi7myYhof92e7t/9kFEAcdghIiU4+9uGr0eiI113hcRhTwGI0SkHH930wAsYiUKQwxGiEg5/u6mATjXCFEYYjBCRMpxnGfEXzjXCFHY8SkY2bhxI/Lz8xEdHY3i4mLs2rVr0HVff/11LFq0CGPGjEFiYiLmzp2L9957z+cGE1EQC0RmhN00RGHH62Bk27ZtWLVqFR577DFUVlZiwYIFWLx4MWpqatyuv3PnTixatAhlZWWoqKjAddddh1tuuQWVlZUjbjwRBRl/F7ACnGuEKAx5HYw888wzWL58OVasWIGpU6diw4YNyM7OxqZNm9yuv2HDBvzwhz/E5ZdfjokTJ+Lpp5/GxIkT8c9//nPEjSeiIMMCViLygc6blc1mMyoqKrBmzRqn5SUlJdizZ49H27DZbGhvb8fo0aMHXcdkMsFkMtnvt/W96VgsFlgsFm+aHJLk1xgJrzWY8LiPnK61FQKA3thYiB4eR2+PuyY+HloA1kuXYOPfymc839URacfd09fpVTDS1NQEq9WKtLQ0p+VpaWloaGjwaBu//vWv0dnZiTvvvHPQddavX49169a5LN++fTti5TkGIkB5ebnaTYhIPO6+K2lsRAyA3QcPorWry6vnenrcpzQ2YjKAmkOHcLCszPtGkhOe7+qIlOPe5eH7gFfBiEwYcDVOURRdlrnz6quv4oknnsBbb72FsWPHDrre2rVrsXr1avv9trY2ZGdno6SkBIn+7IsOEhaLBeXl5Vi0aBH0er3azYkYPO4jp+ubon3+kiVAQYFHz/H2uGuOHQP++lfkJicja8mSEbU3kvF8V0ekHfc2D7tTvQpGUlNTodVqXbIgjY2NLtmSgbZt24bly5fjb3/7G2644YYh1zUYDDAYDC7L9Xp9RPzxZJH2eoMFj7uPbDb7FO36lBRptlQveHzc+7p4NR0d0PDvNGI839URKcfd09foVQFrVFQUiouLXdJL5eXlmDdv3qDPe/XVV/Gtb30Lr7zyCm666SZvdklEocLxWjGcZ4SIvOB1N83q1atxzz33YM6cOZg7dy6ef/551NTUYOXKlQCkLpa6ujq8+OKLAKRA5N5778Vvf/tbXHXVVfasSkxMDJL8+YZFRIElp2OjogA3mU3FcDQNUdjxOhhZtmwZmpub8eSTT8JoNKKwsBBlZWXIzc0FABiNRqc5RzZv3oze3l5873vfw/e+9z378vvuuw9bt24d+SsgouAQiDlGAM4zQhSGfCpgLS0tRWlpqdvHBgYYH330kS+7IApttbXAiRPAxIlAVpbarQmMQMwxAkR2ZiQSzyuKCLw2DZHStmwBcnOBL31J+r1li9otCoxATAXvuP1IC0Yi9byiiMBghEhJtbXA/fdLI0sA6fcDD0jLw10gLpLnuH2zGejp8e++gkUkn1cUERiMECnpxIn+DwyZ1QqcPKlOewIpUJmR+HjXfYa7SD6vKCIwGCFS0sSJwMAJALVajycACxXG1m7sOdUEY2t3/8JABSNaLZCQ4LzPodoVDiLkvKLI5VMBKxENIisLyM8HTp+W7ms0wObNYVVsuO2zGqx9/RBsIqARgPW3F2HZ5TmB66YBpICnvd1pRM2g7QoHWVnA0qXA669L9wUh7M4rimzMjBApyWoFzp/vv79hA7B8uWrNUdrBcy1Y85r0gQ8ANhH40euHpUxEoDIjjvvo26extdseiMjtWvv6ofDKkOgcvjvecktYnVdEzIwQKenUKaCzs/9+CBcYWqw2HDW2oeLsJeyracG+s5dQ1+L64W4VRZxp6kJGoOYZAVzmGqlu6rQHIjKbCNy1+RNcM2kMZueOQnHOaGSPjvHoOlpB6cCB/tvHj6vXDiI/YDBCpCTHDwwA2L9flWb44mKnGfvOXsK+mkuoOHsJB2pb0GNxLpoUAAz4zIdWEJCXGhu4eUYAl8xIfmqc29XOXuzCS5+cxUufnAUApMYbUJw7CsW5yZidk4zCcUmI1mv9396R6ux0DkCOHwe6uoAIuoo5hTcGI0RKkoOPmTOl25WVgCi6Fh+qwNjajeqmTuSnxiEtIRonGjvsgce+s5dwuqnT5TmJ0TrMzk1GcU4yinOTMSN7FN45WI81rx2CCCk4efr2QmQkxajaTZORFIPU+Cg0dUhXDdYKAv578RRkJceg4qz0Go/Ut6Kpw4T3jpzHe0ekrjS9VkDhuCT765udm4y0xGinY5WRFOP/1zOcQ4ek8yg9XRpV09gIHD4MXHGF2i0jUgSDESIlycHIN74BHDwIXLgANDQAGRmqNsuxuBMADDoNTL02l/UmjIlDcW6y/Wd8ajw0GudAatnlOWjpsmD9v45hVs6o/iLRQBawDuimaeux2AOR5+8pRlFWkj2IWFIkHfseixWH61rtwcm+mkto6jCjsqYFlTUteGF3NQBgVIweLd0WAEFUCCufV7NmAb29QHm5tIzBCIUJBiNESpK7aebOBaZMAaqqpA8NFYORgcWdAGDqtSFap8GsnP7AY1bOKIyKjfJom1dPTAX+BZxo7IAoilIdhoqZkSN10u9xo2JQMj3d7VOi9VrMyRuNOXmjAQCiKKLmYpc9O1RxtgXHjG32QAToL9C9ZtIYdTMkjhk3ORgZ2CVIFMIYjBAp5cIFoK5Ouj1jhvTBIQcjixer1ix3xZ0A8MJ9c3D1xDE+bXPi2AREaTVo7+nF2eYu5KXGBe5CeYBLZuRwnfS7cJzn+xYEAbkpcchNicPSWdIQ2fePnsfyP33utJ69QDeYghHHZURhgEN7iZQif1OdMEGalOuyy6T7Kn9ouCvu1AoCJoyNd7O2Z6J0GkzJkCYeO1zfF4SoWMAqt6Ewc2T7npaZiAG9UhAAqUBXLVar1OUHSOeUfF4dOOA6KytRiGIwQqQUORiZOdP5t8rp9NpLzsNxtYLQX3Q6AoXjpA/+Q3Wt0rf1ri7pARW6aQ7JmZGskQUjGUkxWH97EbQOBcfxBh1Gx3nWfeUXJ08C3d3SyJmCAmDyZMBgkEbYyJPrEYU4dtMQKcUxlQ70f4M9flz64IhzP/zU35776BQA4NaZGbjr8lzkpcYq0uVQ1BeMHK5rdZ6WPcDdNB2mXlT3jQSS2zQSyy7PwTWTxuDE+Xb8118P4kKHCW/sq8NdV6hUxCqfVzNmSFPAA0BREfD559JjnBKewgAzI0RKkT805CAkLU0qXBVFaWimCo41tOH9Y40QBGDVDZMxd0KKYrUP/cFIG0S5XiQmBtDrFdn+kBwyI0fqWiGKQEZSNFLjDYpsPiMpBtdMGosHFo4HAGzeeRpWd4U3gTAwyAWCpguQSCkMRoiU0NMDHDsm3Xb80JBvq/ShsXmHlMZfUpgx6MRgvpqUJhWxtnZbcM54SVoYiKyI437a2vq7aBTIigx01xU5SIrRo7qpE+8daVB8+x5xF4wESRcgkVIYjBApoapKqpsYPdr54mUqBiPnLnbhHwfqAQAPXjtB8e1H6TSYnC4VsR6qbZEWBqJ41XE/ra32kTRKdNEMFG/Q4b65uQCATR+dgiiqkB0ZKhhhZoTCBIMRIiU4dtE4zraq4ofG73dJXQsLJqb6JWsAOBSxNvYVyaqYGfFHMAIA35qfj2i9BofqWrH7ZJNf9jGohgbpR6OR6kRkM2ZIv2trgebmwLaJyA8YjBApYeBIGpnct3/woDREM0CaOkzY9tk5AP7JisjsdSMtfROFBSoY6cuMdGijcPqCVLzqr4BrdFwU7uqbgXVTXzFwwMjn1cSJztehSUwExo93XocohDEYIVKCu1Q6II10iI2VhmaeOBGw5mz9+AxMvTZclj0Kc8en+G0/cjByqEsjXUAvUN00cXGAIKBq7HiIANITozEmQZniVXdWLMiHTiNgz6lm7D/X4rf9uBjsvHJcxq4aCgMMRohGShT7v53KmRCZVtufUg/QN9j2Hgv+tPcMAODBhROkqdr9ZFJ6PPRaAa02LWoTxwYuMyIIQGIiDqdJWR9/ZUVkWcmx+MrMTAD9Q6UDYrCMG8ARNRRWGIwQjdTZs9K05Ho9MHWq6+MB/gb7yqc1aO/pxYQxcSiZlubXfRl0WkxK65uJNb0gcMEIACQlSfuEd9PA++rBhVLg815VA042dvh9fwA8y4ywm4bCAIMRopGSPzCmTwei3MzUGcBgpMditV99duXCCS5X3PUHe1dNekHgumkAIDERh9InOLXBnyamJWDRtDSIIrB5RwCyI11dwBdfSLeHCkaqqgCTyf/tIfIjBiNEIzVwsrOBAhiMvFFZhwvtJmQkRePWmeP8vj/AYURNgDMjXaNScGq0NIw6EMEI0F8M/Ob+OtS3dA+z9ggdPixdeyYtDUh3cyXi7Gxg1ChpSHlVlX/bQuRnDEaIRmqofn1AGpKp0fQP0/QTq020f2NfsWA8onSB+fe2j6hJmwAxMXCZkaq08bBptBirtWJsYnRA9jk7JxlX5o+GxSpiS18Gym+G6qIBpLoZdtVQmGAwQjRSw31oxMYCkyZJt/34ofGvw0acae7CqFg97ro822/7GWhyegJ0NisuxSahLiZwwcihZGm4bZGuJ2D7BPqzI6/+pwaXOs3+29Fw55XjYyxipRDHYIRoJFpagDNnpNuDddM4PuanDw1RFO1zYHxrXh7iDIG7Bma0XotJHY0AgMOID9h+D8VLXReF1taA7RMAFk4ag2kZiegyW/Hi3rP+29Fw3X+OjzEYoRDHYIRoJA4elH7n5ADJyYOv5+dvsLtONOFIfRti9FrcNzfPL/sYSlHzGQDAIbP/5voY6HDUaGnfpsDOiioIgj07snVPNbrMvcrvxGbrP7c8yYwcOCANMScKUQxGiEbCk1S64+N+6qaRsyJfvyIHyXFuRvT4WaFRmtDtUKf/R+8AQJe5FycFaUbSojZjQPbpaHFhOnJTYnGpy4K//Oec8js4dQro7JSugix38bkzbZo0pLylBaipUb4dRAHCYIRoJDxJpQP9wcgXX0hDNhVUWXMJe083Q6cRsGJBvqLb9lRhjTSa4/AlS0AuJnfU2AYbBIzpuIi0lvN+399AOq0G918jTcf+wq7TMPfalN2BfF4VFUkT5w0mKqp/bht21VAIYzBCNBLDjaSRpadLQzRtNmnIpoLkrMhts8Yhc1SMotv2iMmEqXXHobVZcbHHCmOr/wtKD9e1AQCKGk4CbW1+3587d8zOwpgEA+pbe+xXR1aMpxk3x3U4ooZCGIMRIl9ZLP2BhTcfGgp+gz3Z2I7tVechCMDKheMV265X2tsR3WvGxCapm0C+iq4/yfsoPK9eMBKt12L51VIm6rkdp2CzKZgR8iUYYWaEQhiDESJfHTsGmM1AQgKQlzf8+n740Hhux2kAQMm0NBSMTVBsu15plQIDuYj1cACCEXkfhQ2n7PtXwzeuzEFCtA4nGztQflTB7iJvghGOqKEwwGCEyFeOF8fTePCvpHAwUt/SjTcr6wBIU7+rpi8zIReS+jsz0mOx4kTftWGKVMyMAEBCtB73XJULANj40Sll6mUaG4H6emlSs6Ki4deXg5HqalUDM6KRYDBC5Ctvvr0C/R8aBw8CVuuId//7XafRaxMxd3wKZuUMMazY3/o+AAv7htgermv1axFrlbENVpuI1Ggt0tubVf8A/vb8fBh0Ghw414JPTl8c+QblILegAIj3YN6WlBRpanigfzgwUYhhMELkK09H0sgmTZKGanZ2SkM3R+Bip9k+pLT0OhWzIoA9MzENndBqBDR1mNHQ5r8iVnsXTXocBABob5cKg1UyJsGAO+dIwcAmJS6g522QC7CrhkIegxEiX4ii5yNpZFptf9p9hCMf/rTnDLotVhSOS8TVBakj2taI9QUj0fGxmDhW+iZ/qNZ/2Qp520XZfdkgUZQCPBXdf814aDUCdh6/MPKaGW/PK8d1OaKGQhSDESJf1NcDTU1SgDF9uufPU6BupNPUiz/tPQMAeHBhAQQhMBONDUruJklMtF/B159FrPaRNLkpgE7n3AaVZI+Oxc0zMgBII2tGxJfMCEfUUIhjMELkC/lNf/JkqevFUwp8aPzls3No6bIgLyUWXy50c2n5QJMLSJOS7Ffw9VcRq1PxatYoIDHRuQ0qkouIyw4ZcabJx0xNd7c0SgvwrZvm8GGg1w/T0xP5GYMRIl/4kkp3XN/HYMTca8MLu6ThvA8snACtRuWsCNAfCCQmonCcFBwcqmvzSxHr0b7i1ZS4KGQkRQdVMDI1IxHXTR4Dmwhs3nnat40cOSIVN48ZA2RkeP688eOlYleTSZrllyjEMBgh8oUvqXRAqhkRBKmbp7HR692+ub8OxtYejE0w4PbZ47x+vl/IXSRJSZiWkQSNADR1mNDYblJ8V4frpaCjcFyS1D2VlOTcBpWVXlcAAHitohaNvhTxOp5X3nS/aTQsYqWQxmCEyBfejqSRxcdLQzYBr4sNbTbRXo+wYkE+DLohrlkSSA6ZkZgoLQr8WMR6WC5e7esOCqbMCABcnjcac3KTYbbasOXjau834Ot55fgcBiMUghiMEHmrowM4eVK67cuHho9dNdurzuP0hU4kRuvw9StyvN+vvzgUsAKwF7H6o27EXrza1x1kD0aCJDMCAA9eK9WO/PmTGrR2W7x7sq8ZN8fncEQNhSCfgpGNGzciPz8f0dHRKC4uxq5duwZd12g04u6778bkyZOh0WiwatUqX9tKFBwOHZKGk2ZkSBe/85YPwYgoivY5LO6dm4eEaL33+/UXhwJWoD9rofSImh6LFcfPtwPoD3js3TRBkhkBgOsmj8XktAR0mHrx8idnPX+izeZ7LZLjc/bvl85PohDidTCybds2rFq1Co899hgqKyuxYMECLF68GDU1NW7XN5lMGDNmDB577DFc5su3SKJgM5JUOuDTN9i9p5px4FwLovUafHt+nm/79ReHbhoAfhtR80VDO3ptIpJj9RgnX504yLppAECjEezZkT/srkaPxcPZdqurpaybwSCN0vJWYaFUO3LhAmA0ev98IhV5HYw888wzWL58OVasWIGpU6diw4YNyM7OxqZNm9yun5eXh9/+9re49957kSR/iyEKZSP59ur4vGPHpKGcHpCzIsvmZCMl3uDbfv1lQDfNtMxEaASgsd3kWxHnIPq7aJL651YJsgJW2c0zMpCVHIPmTjP+9vk5z54kB7lFRf3zp3gjJqY/iGFXDYUYr854s9mMiooKrFmzxml5SUkJ9uzZo1ijTCYTTKb+Svy2vm89FosFFouXfbAhSH6NkfBag4mnx11bWQkNgN7CQoi+/I1SU6EbMwbChQvoPXAAYnHxkKsfrmvDrhNN0GoEfGtuTtCdF7q2NggALLGxgMUCvQCMT43DyQudqKy5iC9NHjPk8z097gfPXQIATM9IsK+riYuDFoCtpQXWIDsuy+fnYt3bx7B5xyl8dVYGdNqhv/tpKiqk1zJjhs+vRTtjBjRHj8JaUQHbDTcMuS7fZ9QRacfd09fpVTDS1NQEq9WKtAH95GlpaWhoaPBmU0Nav3491q1b57J8+/btiI2NVWw/wa68vFztJkSkIY+71Yqb9u+HBsCOlhZ0lJX5tI+5mZkYe+ECDr38MmrOD37p+RYT8OJJDQANZo224uDeDxFUl0ITRdzS2goBwAeff46eM2cAAMmi1OY3PvocPac8q18Y7nzfc0wLQICp4STKyk4AAPLPncMMAMbjx/G5j38Lf4m3AvE6LWpbevD959/D1ekiRg2R1LqyvBzpAA7rdKj28bUUGAyYDqDh3XfxuSdX/AXfZ9QSKce9q6vLo/V8yAXCZfppURQVnZJ67dq1WL16tf1+W1sbsrOzUVJSgkS5jziMWSwWlJeXY9GiRdDrg6hQMcx5dNy/+AI6sxliTAyuWb5cmg7eB5qdO4EDBzDDZkPhkiVu1/lbRS3WvVUFW99n+bwZBVjSN49F0OjuhqZvxs8vLV0KJCQAAM7vOYvP/vUFzHHpWLJk1pCb8OS4m3ptePQ/7wMQce/N1yIrWaoZES5eBH7/e2TExmLJIMdRTdvb96P8aCPK67V43wg8des0fK04y+26uoceAgBMu/tuTJ03z6f9CTod8OKLyLxwYdjjwfcZdUTacW/zsJ7Lq2AkNTUVWq3WJQvS2Njoki0ZCYPBAIPB9SuEXq+PiD+eLNJeb7AY8rgfOQIAEGbMgD462vedzJ4NANAePAitm30ZW7vxY4dABACe/bAaX78yDxlJXkw/728XL0q/BQH6UaOkAkoAM3NGAwCqjO0en8NDHfdj51thsYoYFatH3piE/i8/o6X9aNrboQmy/xVjazfeP9Y/sZ1NBH7y1lFcNzXd9W/Y1ATU1gIAdLNnA76+ljlzAADCiRPQm81AXNywT+H7jDoi5bh7+hq9KmCNiopCcXGxS3qpvLwc83yM5IlCykhH0sgcR9TYbC4PVzd1OgUiAGAVRZxp8izlGTBy4WhCgj0QAYDpmYkQBKChrQcXFJiJVS5eLXIsXgWCcp4RmVd/Q7ngdMIEe3bJJ2lp0o8oSkPQiUKE16NpVq9ejRdeeAF/+MMfcPToUTzyyCOoqanBypUrAUhdLPfee6/Tc/bv34/9+/ejo6MDFy5cwP79+1FVVaXMKyAKpJGOpJFNniwN4ezoAE67XsckPzXOZTZwrSAgLzXIaqYGzDEiizPoMD5V+lauxHwjjiNpnAThPCOy/NQ4DLx0kEaA+7/hSCY7G4iTn1EI8joYWbZsGTZs2IAnn3wSM2fOxM6dO1FWVobc3FwA0iRnA+ccmTVrFmbNmoWKigq88sormDVrVlD27xINS6kPDZ1OGsIJuP3QyEiK6Z/yHFIg8vTthcHVRQO4zDHiSMn5Rg47ZEacBOE8I7KMpBisv70IWoeA5M452e7/hkoFuY7b4LTwFEJ8KmAtLS1FaWmp28e2bt3qsswfV+8kCrjGRmkyKUHoDyRGYuZM4PPPpQ+NO+5weqitx4IvGqTZRp9eWojrpowNvkAEcJljxFHhuCS8ub9+xMGIuddmPxaFmYNkRjo6pKvd+lhQ7C/LLs/BNZPG4JfvHsPrlfVoGGzeFSUzI7xGDYUgXpuGyFPyt9eCAumCdyM1xDfYdw83wNRrQ8HYeHz9ipzgDESAQbtpAOWmhT9+vh1mqw1JMXpkjx5wHByDoPb2Ee3HXzKSYvDQlyYCAHadaHKtoenpAY4elW4rmRk5dEgK0IhCAIMRIk8p+e3VcTtugpE3K+sAAEtnjVN02LzihuimmT4uCYIAGFt70NThexGr48XxXI6FwQBERTm3JQiNHxOPy7JHwWoT8fbBeucHq6qA3l4gJQUYN27kO5s0SZqNtbMTOHVq5NsjCgAGI0SeUmokjWzGDOl3ba00tLOPsbUbe083AwBunZmpzL78Re6mcZMZiTfokN9XxDqSrppBi1dlQTol/EBL+/6Wb/QFmnaOQa4SgadWK12nxnHbREGOwQiRp5QsMgSkIZwTJjhvG8Bb++shisCV+aORlRxko2cGGiIzAvTXeByu9T1QGLR4VRbERayObrksE1qNgIO1rTjZ2NH/gNJBLsARNRRyGIwQeaK7W7qwHaBcMOK4rb4PJFEU8ca+/i6aoDdEASsw8hE15l4bjhnbnbblIojnGnGUEm/AwknSdXredMyOKN3957gtZkYoRDAYIfLEkSNSMWBKCpCpYNfJgA+No8Z2fHG+HVE6DRYXZSi3H38ZooAV6O9aOVLvW9biRKNUvJoYrUPO6EGyREE818hAt/UFmG/ur4PNJkqTkymdcQM4ooZCDoMRIk84fmAoWVA6IJ3+5n7pG/MNU8ciKSYEpooepptm+jhpeV1LNy52mr3e/GGHepFBC3lDpJsGABZNTUO8QYfaS92oqLkEnDkjtTsqCpgyRbkdyfVI9fXAhQvKbZfITxiMEHnCH6l0x+0dPQprVzfe6gtGbpsZAl00wLDdNInR+hEVsR4arl4ECJkCVgCIidLiy4XpAIDX99X1n1eFhb5fj8adhARpCDrAuhEKCQxGiDzhjyJDQBrKmZIC9PZi7479ON9mwqhYPa6dPFbZ/fjLMN00QH9XjS/zjRyqa3PahlshlBkBgNv7umreOVgPU6Ufumhk7KqhEMJghGg4Npt/+vUBqcunb5uv9xU13jwjA1G6EPnXHKabBgCK+rpqDnk5osZiteGoMfyCkSvHpyA9MRptPb348PQlaaE/ghGOqKEQEiLveEQqOnNGmt1T6X592WWXoUtvwHutUpo+JEbRyIaYZ0RW6OOImhPnO2DutSHBoEPuYMWrjvsOgW4aANBqBPv8MW+IfRkwpTNuAEfUUEhhMEI0HPnNfPp0Zfv1ZTNnorzgSnQK0oiR2TnJyu/DH0TRo8yIHIzUtXTjkhdFrHK3zvRxidAMvPytoxDLjADA0tlSwPlhxnS0RMf7JxiRt3n0qDTlPFEQYzBCNBx/ddHIZs7EG9O/BAC4bWZmcE//7qizU+rCAoYMRhKj9chLkTIb3mRHPCpeddx3iGRGAGBKeiKmxAsw6/R4Z/5tQ2aWfJaVBYweLQ1Jr6pSfvtECmIwQjQcf42k6XMhKx+78mcBAJaODaErXMuZCK0WiB16ptjpPnTVDDsNvCyE5hlxdLvQCAB4c9q1/tmBQz0Su2oo2DEYIRqOv0bS9Hm76gKsGi1m1h9DfvVRv+zDLxy7aIbJ5hTZJz/zLBjpdShe9TgzEmLByFdOfQJBtOGz2HScu9jln51wRA2FCAYjREO5dAmoqZFu+ykYkS+ctvTIR6H1oTHMHCOOvJ0W/uSFDph6bYg36JCXEjf0yiFWwCpL3/cJ5p09CGDA9PBK4ogaChEMRoiGIr+J5+UBo0YpvvmTjR04WNsKHUTcfHRnaAUjHswxIpMvmHfuYjdauoYvYpWHAU/PHKZ4FQjNzIjZDFRVYemRDwAAb+yvgyj6oYvOsZvGH9snUgiDEaKh+LmLRv5GvHCsHindbaEZjHiQGUmK1duvLXO4bvigYdgr9TqS99/dDVgsw68fDKqqAIsFX248imi9BqcvdOLgCK5sPKgpU6QRYG1t0hB1oiDFYIRoKH4cSWOzifZr0dw2d4K0sKYGuHhR8X35hQdzjDjypqvGPpImy4tgBAid7Ehf0Bk/bTJKpknTw7/hj66aqChpSDrArhoKagxGiIbix5E0FTWXUHupG/EGHRbNyQfy86UHQuVDw4vMCOD5tPC9VhuqPJl5VabXAzExzm0Kdg7nlTzJ3T8P1MNitSm/L46ooRDAYIRoMGYzcOSIdNsP3TSv75O+CS8uTEe0Xht6HxpeFLACnmdGTl3oRI/FhrgoLfKHK16VhdpcIw7ByNUTU5ESF4XmTjN2n2hSfl8cUUMhgMEI0WCOHZNqEBITpQJWBZl6rXjnYD0Ah+nfQ23kgxcFrABQ2HeNmpqLXWjtGry2Qw5WpmcmDV+8KguluUZE0an7T6/V4JbL+qaH90dXTaidVxSRGIwQDcaxi0bhWVE/PNaItp5eZCRF46rxKf37cdxvsPOym2ZUbBSykqXulMNDzDdy2NPJzhyF0oiamhqgpUXqXpo6FUB/QLq9qgEdpl5l9ydnRs6ckfZLFIQYjBANxo8jaeRvwF+Zmdn/7V8ORqqqpC6iYOdlNw3gWVdNf/Gq59sNqblGHK91FBUFAJiRlYTxY+LQY7Hh3cMNyu4vORnIyZFuMztCQYrBCNFg/DSSpqXLjA+PXQAw4Aq92dnSB4fFEhrXEvGymwYYvojVahNRVe/hzKuOQikz4qYoWhAELJ0pnQt+mQCNXTUU5BiMELkjin4bSfPOISPMVhumZiRiSrrDt/9Qu5aIl900QH+AMVgwcvpCB7otVsRGaZGfGu95W0I8GAGA2/oC049PNaGhVeGr7IbSeUURicEIkTu1tdJ8H1otMG2aopuWv/kunZXp+mAojXzwcp4RoD8YOdPchbYe1yLW/uLVRGg9LV51bEModdMM6P7LHh2Ly/OSIYrAPw4onB0JpfOKIhKDESJ35HT21KlAdLRimz13sQufnbkEQQBunTnOdYVQ+gbrQ2YkOS4K40b1FbG6yY54fKXegUIlM9LS0j8TqptaJDk78kZlvbL7lc+rI0dCZ5ZaiigMRojc8VMXjZwVmT8hFWmJboKcULqWiA8FrMDQXTVeTQPvKFTmGZGD3NxcqT5ogJuLMhGl1eCosQ3HGhQMrPLypGNkNktD1omCDIMRoj7G1h6caBVgbO3xy0gaURTxhjz9+yw3WRFAysTo9dKHqny14GBkswHt7dJtL7ppgP4p3g8NuEaN1SbiiC/Fq45tCPbMyDBF0Umxelw3ZQwAhecc0WiAGTOk233nttP5TqQyBiNEAF7YdRoLf7UTv6vS4tpf78S21r6shYKZkYO1rTh9oRPReg2+XJjufiXHa4kEc1dNR0f/bS8zI4ONqKlu6kSX2YoYvRbjx3hRvOrYhmAPRjzIuMkjrN6qrIfVpmB2zGFEzSufnnU+3z8L4sCXIgKDEYpYpl4r/nXIiG++8Ameeuco5Ld9mwj8aNadMCakKJoZkb/plkxLR7xBN/iKoVA3IneH6PWAweDVUwszpcChuqnTqYhVzopM87Z4FQidAlYPgpHrpoxFYrQODW09+PR0s3L77tvn8WNn8aM3Djud72teO4T3j56HGOxdgxS2hnhHJAo/oijiYG0rXttXi38cqEfLINOSWzVanJx4GTLGjFFkvxarDf88MGD698GEQjDiOMeIl7PTpsQbkJkUjfrWHhypa8OcHCk4OexrFw0QGpkRx2sdDRGMGHRa3DQjE6/+pwZvVNZhXkGqMvu/7DLUJo7Bt3NvcnlIBLD8T5+jYGw8vlqchaWzxrmvaSLyE2ZGKCKcb+vBcztOYdFvduLWZz/Gi3vPoqXLgrREA755VS7cfRHfMO/raO1WZuTB7hNNaO40IyUuCgsmDvPhEgrDMH0YSeNI7qo54jAt/BFju9NjXgmFYOTYMSkgSUqSCliHcPtsKWD91+EGdJutiuz+wKhs3HbvM6hLcA2wBQBRWgEnGzvws38dw9z17+PeP/wH/zhQjx6LMvsnGgozIxS2eixWbK86j9cqarHrxAXI3e8GnQY3Tk/HHcVZuLogFVqNgKJxiVj7+iHYREAjitD1mlERl4E7Nu3BH791ObJHx46oLXIXzS2XZUKnHeY7wMBriYwaNaJ9+4UPc4w4KhqXhO1V5/uG8mbDJgJVxhFkRkKhm8axKHqYbFJxTjKykmNQe6kb/z563n4hPV+9e7gBq7ZVoicuGVMaq7H0ynz8/IzURaMRgPW3F2FxUQbKDhrx2r5afHbmEnYev4Cdxy8gIVqHm2dk4KvFWZidkwxB4es0EQEMRijMiKKIfTWX8PeKOrx9sB7tPf0XHZuTm4yvFmdhyYwMJEbrnZ637PIczM1Pxl/LPsTXn/8tWo9X4zsP/BYnGzuwdOPH+P29czArx3Uopic6TL3YXiVdb0T+xjuk5GTpm/PZs9Loi4ULfdqvX400M2IfUSMFDxd6gE6TFdF6DSaMifN+g3I7zGbAZPK6jiUgvBgurtEIuG3mOPzuw5N4o7LO52BEFEVs2V2Nn5YdhSgCC7vr8eyff4j4CY9h8X99H38t+xB3LrkOOakJAIC7rsjBXVfk4ExTJ17fV4vX9tWhrqUbr/7nHF79zznkp8bh9lnjcHtxln2+GCIlMBihkGZs7UZ1Uydi9Fp8fLIJr+2rQ3VTp/3xcaNicMfscbh9dhbyUof+kMtIisak+F5kVuzBuJ4evHn7BHxnZzOqjG246/lPsGHZTCwuyvC6je8ebkCPxYbxY+I8/9Y/c6YUjOzfH5zBiI9zjMjk41Dd1IkOUy/OdUjftqdlJA6fOXInIcG5bWPH+tQuv/Jy7prbZknByI7jF9DcYUJKvHcBVq/VhnX/rMJLn5wFAHzjyhysO1EFnbkbOHAAGUnRmJgkIiPJtTYkLzUOq0smY9UNk/Bp9UX8vaIW/zpsRHVTJ35dfhzP/Ps45o5PwR2zs7C4KB2t3RZUN3UiPzUOGUkMUsh7DEYoZP3x42o8+c8qDKz/j43SYnFhBu4oHoer8lP6r4rrgbj6egg9PUBcHNJnTMZfp4n4/quV+OBYI0pf2Ye1i6fguwvGe5Wqtk//PnOc58+bORN4663gvbCZDxfJc5Qab0BGUjSMrT2oMrbhXKd0XHzqogGkafvj46Uhx21twReMiKLXF14sGBuPGVlJOFjbircPGnHfvDyPd9dh6sXDr+zDh19cgCAAP1o8FSsW5EP4d98VgT2sR9JoBMydkIK5E1Lw5K3T8e7hBvy9ohZ7TzdjzynpZ+3rB2G2Sv+FcpfPsstzPG4rEcBghEJMe48F/z4q1YHsPuk67PHHN03F16/IQdxQQ2eHkFRdLd0oKgK0WsRrgefvKcaTb1fhxb1n8XTZMZxp7sKTX5nu0Tf4htYefHyqCcAQE525E+wjakbYTQNIharG1h4cqW9HbV8w4lPxqiwxsT8YCTbytY50Oq+udXTbzHE4WNuK1yvrPA5GjK3d+M7Wz3HU2IZovQYbls3Elwv7MnpyPdLJk85zxXggzqDDHcVZuKM4C7WXuvDGvjps+6wGtS39k6bJw4Rjo7RYUpTp/RBtilgcTUNBr9PUi38cqMf9L36O4qf+jUe2HXAbiADA9MwknwMRAEiSrxvi8O1Vp9Vg3Vem4yc3T4MgAK98WoPlf/oc7W4u9DbQPw7UQRSBy/OSvSuCdbyWiNns+fMCZYTdNEB/FuRQXSvO9fWsybOz+iSYp4SXg8pp07yqZ7nlMukD/cC5Fpy+MHzwcKS+Fbc9+zGOGtuQGh+Fv9w/tz8QAaSMUUYGIIoQDh/28kX0y0qOxcPXT8Qvvuo6D48I4OFX9+PKp9/H/7x1GP+pvgibkpO3UVhiMEJBqdtsxTsHjSj9cwWKnyrH91+txPaq8zD3SrUX356f5zIcVysIyEsd2aiXRDkzMiCVLggCll+dj+e+WYxovQY7jl/A157bi/qW7iG3J1/wzKusCCAVsCYlBe+1REbYTQP0ByMffHEBJqsAg06DAm9nXnUUzFPC+3itozEJBvtQ8Df3D33xvA+PNeJrz+3F+TYTCsbG443S+ZiZPcp1xb42CAp0AeaPiXP5PxQAJEbr0NRhwot7z+LOzXsx92fvY90/j6DiLAMTco/BCHmuthb48EPptx/0WKx493ADHnplH2b/bzm+98o+lB2Sij/zUmLx0HUF+NcPFuD91Qvx+C3Tsf72Imj7ajC0goCnby8ccfGcvZtmkJlXb5yejr8+MBdjEgw41tCO25792O0F3wDgWEMbjhrbEKXV4OYiL0dDCEJwzzeiQDfN9HHScztN0jwWU9ITfCtelQXzXCMjuNaRPEnem5V1g86Q+tLeM1j+p8/QZbZi3oQUvPbgvMEzcXIbFAhGMpJiXP4Pf3ZHESp+sghbv305vlqchYRoHc63mfDHj8/gjk17cfXPP8BTb1dh/7kW/8746uf3K1IWa0bIM1u2APffL10gTaMBnn8eWL7cp03JI2DyU+MwOi4Ku4434e2D9fj30UZ0mPqH4mYlx+DmGZm4eUYGpmcmuhR/Lrs8B9dMGoMzTV3IS40deRV/QwOiW1ogCgKEoqJBV5uRNQpvlM7Dd7Z+huPnO3Dn5r34v7tm4YZpaU7ryXOLXDdlDJJi9e42NbSZM4GdO6UPsnvv9f75/jTCeUYAYGxCNNISDTjfZgLQP028z4J5rpERXAW6ZFo64qK0qLnYhX01l1CcO9r+mNUmYn3ZUbywWwqiv1achZ8uLUKUboigTs6MHDwI3Hyz1+0ZaLD/w2snj8W1k8fip0sLsftEE94+aER51XnUt/bghd3VeGF3NbKSY3DTjAzcMiMT0zMT0dDWo8yoHAXfrygwGIyQe6IInD4N7NoFvPsusG1b/2M2m/SPnp8PXHedV9OBb/usxj65GCBNQGbqtdkfz0yKxk0zMnDzjEzMyEoadvRJRlKMYkMJhYMHpRsTJwJxQw8DzkqOxd8fnIfv/Xkfdp1owv0vfY7/uXkavjU/H4D0IfFWpTz9e5ZvDQrmIlYFMiOA1FVzvq0RgBR8jkiwZkZaW6X/JcCnzEhMlBY3Fqbj9X11eH1fnT0Y6TL3YtVf9mN71XkAwP+7cTJKr50w/IgtORg5dAiwKjO76lD/hwadFtdPTcP1U9PQY7Fix/ELePugEe8fPY/aS93YvOM0Nu84jZS4KFzsNEOEj6NyenqAzz4D3n4b+MUv+pfbbMB3vysFJbfeCowePfg2SDU+BSMbN27EL3/5SxiNRkyfPh0bNmzAggULBl1/x44dWL16NY4cOYLMzEz88Ic/xMqVK31uNPmBzSYVS+7cKQUgu3YB9UP0UdtswPXXAykpwNVXSz8LFgCzZ0sXT+vT3GHCkfo2VBnb8PmZS/j30fNOmzH12pAaH4VbLsvEzTMyMSt7lFdDcZUk96GLM2bAkxYkRuvxh29djp+8eRh/+ewcnvhnFc40d+EnN0/Dp6eb0dDWg8Ronf2S8F5zDEZE0etrwPhVkzRCCD3KXX7+F9uPY3S8wfdhoXIwcvCglJrP8jEIVJoc5GZnS/8vPrh9VhZe31eHtw8a8fgt09HSbcaKP32Og7WtiNJq8MuvzcCtMz2sSyooAGJiIHR3I95o9Kk9vorWa3Hj9HTcOD0d3WYrPvyiEW8frMf7R8+jubO/UNsmAv/92iHsPdWMy/NHY1pGIqakJyImStu/sdZW4OOPgd27pfer//xn8GJvUQS+8x3pdmEhcM010vvVggXAOC/rucgvvA5Gtm3bhlWrVmHjxo2YP38+Nm/ejMWLF6Oqqgo5Oa5vItXV1ViyZAm++93v4uWXX8bHH3+M0tJSjBkzBnfccYciL8JXxmOnUX34NPILxyNjyvgg2lY1zldWwzi+GjlFk/zTLrMZ2LdP+ifeuVP6p750yfnJej1w+eXSh+KmTTDGj0Z1cibyL9Ujo70ZiI4GmpuBt96C+NZbOJeUhiM501A1cz6OZE3BEf0onDcN38b/u2uW7xcDq60FTpyQshkj/PARPvkEACDm5Xn8HL1Wg/W3FyE3JQ4/f/cYtu45g9pLXZC7wq+bMhYGnXbojQxm2jRp/oxLl6RvfFdc4dt2ZEodqy1b+r/p33WXlInwIQVubO3G+8ca7fdFEfjR64dxzaQxvmW7Tp2Sfm/bBvztbyNLzSt4XuGjj6Tfkyf7vIm5E1LsXVo/efMwdhy/gIa2HiTH6vH8vXNweZ4X3/a1WmDGDODTTzFu505gyRIpyzkSPhyvmCgtlhRlYElRBj44dh7f2fq5yzpv7q+3F+5qBGCCwYZpHQ2YfvIAph34GNMbTiG5p73/CWlpQHEx8K9/Ob9fdVyUXuPp08Dhw9LPxo3Sc8aP7w9MrrlGCtYGBP4h9/6u0nZGQhC9rCC68sorMXv2bGzatMm+bOrUqbjtttuwfv16l/X/+7//G//4xz9w9OhR+7KVK1fiwIED2Lt3r0f7bGtrQ1JSElpbW5E4wrSwbNszr2BtQwJsGg00NhvWp7dj2eq7Q35boijCJgK9Nhv++tttePx8/7aeFo/jrrh2KQDZuxfoHjASJC4OmDev/5/yiiuAmBi37Xo4tRNZC69C1cFTOHK2GUdNerRro9y2Kb+rGdOie5EzLhXPGTUQHfIOWojYvfZ63z58lOwX3rIF4ooVEACpZuT3v/d6W+8cNOKRv+6H2aHbSRCAn/k6CdSWLcCKFf0b+p//Ae6+W/qbOP5oPCj6HOpYiSLQ1SUFlo4/Fy+6LjMagcpK521rtdJ1dLz80N5zqgl3//5Tl+WvfvcqzJ3gZQahthbIyQEGvp3deKPUrpQU6Wf06P7bjsuiHM5dX8+r3l7pOHZ39/+8+irwv/8rPS4IgA/nlezeLZ9i54km+/3U+Cj8feW8YWcWduvaa4EdOwAAokYDYYT/OyP9PzS2dmP++vdhc3hvECDim0ldONvYjioxFk3R7t/7M61dmJaoxbRJmZg+PRfTMpPw8dY38SN376ONjVImRc4A798vtdtRWpr9PVC8+mr8+f0q/E9jon1bT6W3465VX/cpgxtMnxX+aJM7nn5+exWMmM1mxMbG4m9/+xuWLl1qX/6DH/wA+/fvx46+k9vRNddcg1mzZuG3v/2tfdkbb7yBO++8E11dXdDrXQv7TCYTTKb+r9RtbW3Izs5GU1OTIsGI8Vg1rn3pC9gc3sQF0YalHacRpxMgAhAhQOyLjuX7EPqWA/bIubNXxDsxOU6RtCCKuKGnHlF6DUQANgiw9f0WHW7bIH3wyfd7rMB+/WjnqFwUkd/bDo1Wg14IsEKw/7YKrst6hSE+mEQReqsFBmsv9FYLokQb9Hot9NEG6ONiERUfC71OA71W+onSCdBrNei1ifjg2IVhj6teK2BSog7TzRcx7dwxTK/YgamHP0W8uT/o2TZjEX5040OwarTQ2qz46XvP4s6pydLsmX3HA/Lxdbw98HdnJzQvvQTB4fQVBQHiHXdIGZveXunHau3/Lf8MfKy7G8Lhw05dM6JWi94TJ7z+gP13VSMefHW/0zKNAHz0X9e4nXZ7ULW10BUUQBj4RumGaDA4ByfR0RBjYoDYWOm+KEIoL3d+fQAwaRLQ3g5cvAjB5EEKawi95eUQvZy23tjag2t/vROOIz19OlYAhI8+gq6kxKvnOBLj46XAJD4eOHLE+VgJAkS5Nqq7G0J3txR09PQ4BR5Cb++g27dvy8fzytjag4W/3ukUa/l6rFBbC92ECc7/OwDEmTOlc0ankwJM+bf8o9O5PCaaTND85S8u/4e2b36zv+5KfkwUnW9Deq+EKAKdnfjr0Ut47Mbv2d8bnn7vd1h2sNzevsaEFBy58nocLroKVWPyUSXGoabN8zl4FhRIszFbem0wW22wWEVYzBaYOzph6eqBpccMi9UGs0YHi1b+GbzwXBBF6CBCC/m3DVqXZf2/RasVx3VJLu/vsyzNiNFKQ1s1oggNROl239c2+b7gsNxkseG96HEunzs3ddcgVidI//N9z4GIvk8e2P9OAkQIItBpFfFG/IT+910AWpsVH94zBRlTRpgt69PW1obU1NRhgxGvummamppgtVqRluY8aiAtLQ0NDQ1un9PQ0OB2/d7eXjQ1NSEjw/VaH+vXr8e6detclm/fvh2xsSObRwIAzldWw6aZ6LRMFDR4PaHA+425SQaIgoDyGB/6Id1l8wUB1XplskEQBFh0UbDoBjTaBqDdKn0weSEzRsTEJBFZcSLGxYlIiwF0GguAGGDGLNTfNAuXLlxASlUVRldVYWxlJZYdLMc11ftwZlQm8lr6unsOKvTyRBHC3/+uzLasVnz65z+jeYhRNe6caBUw8A9pE4G/ln2IiUmeJyFTDx3CfDeBSK/BAMFqhdbhg08wmaSLw7W09C8bZvsCABw/7txOnQ7mhASnH0t8vNN9iCJmbtrk9OFj02jw/tmz6Ckr8/j1ye7MF7DttPS2K0DEnfk2VH78ASqHf6qT6KYmlAiCy4fi0bvvhiCKiGpvh76jA1Ht7U4/+o4O6bzp6Bh0RlJBFCF88IFX7emNioKo1UI/IPs4kvNKFEd+XgF959aA76ACAEGhQmlBFKF96SWvn3cXgIXVFU7vDa15eTg/Zw6ap03DxcmT0RsXh1wAuQAWowvdvUB9F1DbKaC2U0Bdp4D6LjhlX2W7BpkoUXr1MUC0d9lZURBggQCnqQ+H+sdz9z1REFAZ5UMXtZtPblEQ8HZsrvfbGsCq0eLd18qQNkuZYKSrq8uj9XwqYB1YrS2K4pAV3O7Wd7dctnbtWqxevdp+X86MlJSUKJMZGV+Nn7nJjNxrq0WCQecaQUqt7osw5ahSeryjpxfPR+VDFJy39bDpBJKiddBAhBbOUe3AKFeOflu7LXg8utBpWxqbDb8xHcDYGK3baFsnwOF+/+2mDhMWx1zt9Bo1Niv+escEjMrN6vtmIH07MPfKt20w94r9t60izFYbmjtM+N2Hp52uAaMRgL98b6HX3/bFggJktDdLQQj6vkWtWiUNyxziG5TLsrY2aDZudP1G9uijUtrd4RucONw3vJYWaJcvd96WVosrv/ENn77Bbjzq+m3/ziXXeXesZsyA+PjjTpkRUauFePQoxKws2KxW6Zv5gG4BwfHbet9jgtEIzU9+4vz6NBpYt26FOHlyf9dFXBy0goAYAEO9LVsvuwza0lIIVitErRa2jRvxJR+HHi8BcH9zO17fvhu3l1yN7JSEYZ8zaLusVqd2WTduxMRvf3vI5/TabFIQ19wM4eJF4PhxaFescDmvrE8/Lc1cKmef+rJOYnS0a7dZdLT0jbXvfB/4N1T1vALcn1saDazPPSf9HzpmD202oLdXyvo4Zhnlxy9dgmbDBtf/w+99TyoodpfVdLesrQ2a3/zG+b1Bq0XsBx8gPysL3nwsnr3YhUUbdjtlkQQBWH1DAcbEG/oyvwKitBpE2TPBgsPt/vuXTpzBba+fcXkf/Uf3HoyJN7hmpkX03Yfzcgi40N2LR6Mvc3l/f9x0BIkxeueMuVM2fWB2HWjpseJZQ4HL5853LWcQb9ACguCSxXeX8W83W/GikOWSGfnyHUsUzYx4wqtgJDU1FVqt1iUL0tjY6JL9kKWnp7tdX6fTIWWQynKDwQCDmymT9Xq9224db+UUTcL69M/xo4b4/pRgegeWrX7Qp+2Nf+YVN9taPfwT3TC42datq3/s9XZSAKx3s605V073qV1Zo+Pwo9cPwyqK9gnG5MuOeyw/X+pPfuAB6Q1Nq4WweTO0vvZVz5ql3LZsNogPPGD/IBM2b4beh6K+nFQ91t9e5LdjZW+TXi996I0a5dn20tNdtqW75x7v2iS7/36p6PHkSQgFBdCNsMAzOyUBE5NEZKckjOz/29d2paVJP4A0KkwUXY+VL+fVcH9DLyh2Xjm0a+D57tNrBIDp05X5P5w2TZFjVZCWhJ+5OVa+1G1lpxRh/Z5DLu+jhat/5vW2AKDX7WfFGp+2le12Ww97vZ1pbrYz0sJaR57+T/tUwFpcXIyNciUygGnTpuHWW28dtID1n//8J6qqquzLHnzwQezfv1/VAlZAqiA+c6QaedPzFRlNo9S2ag4dx7uvleHLdyxRpNpasdfY2q3MBGO1tdKFugoKRj5SQcFtWaqr8emf/4wrv/ENn94EHYX7sVKSxWJBWVkZlixZosiXDUUE6XFX7LyCsue7Yq8xSI9VuL+/K/n6BvL481v00l/+8hdRr9eLW7ZsEauqqsRVq1aJcXFx4pkzZ0RRFMU1a9aI99xzj33906dPi7GxseIjjzwiVlVViVu2bBH1er3497//3eN9tra2igDE1tZWb5sbksxms/jmm2+KZrNZ7aZEFB53dfC4q4PHXR2Rdtw9/fz2umZk2bJlaG5uxpNPPgmj0YjCwkKUlZUhN1cqnDEajaipqbGvn5+fj7KyMjzyyCN49tlnkZmZif/7v/9TfY4RIiIiCg4+FbCWlpaitLTU7WNbt251WbZw4ULs27fPl10RERFRmONVe4mIiEhVDEaIiIhIVQxGiIiISFUMRoiIiEhVDEaIiIhIVQxGiIiISFUMRoiIiEhVDEaIiIhIVQxGiIiISFU+zcAaaGLftfw8vRRxqLNYLOjq6kJbW1vwXDgsAvC4q4PHXR087uqItOMuf26Lw1yTNySCkfb2dgBAdna2yi0hIiIib7W3tyMpKWnQxwVxuHAlCNhsNtTX1yMhIQGCIKjdHL9ra2tDdnY2zp07N/Qll0lRPO7q4HFXB4+7OiLtuIuiiPb2dmRmZkKjGbwyJCQyIxqNBllZWWo3I+ASExMj4mQNNjzu6uBxVwePuzoi6bgPlRGRsYCViIiIVMVghIiIiFTFYCQIGQwGPP744zAYDGo3JaLwuKuDx10dPO7q4HF3LyQKWImIiCh8MTNCREREqmIwQkRERKpiMEJERESqYjBCREREqmIwEmR++tOfYt68eYiNjcWoUaPcrlNTU4NbbrkFcXFxSE1Nxfe//32YzebANjTM5eXlQRAEp581a9ao3ayws3HjRuTn5yM6OhrFxcXYtWuX2k0Ka0888YTLeZ2enq52s8LOzp07ccsttyAzMxOCIODNN990elwURTzxxBPIzMxETEwMrr32Whw5ckSdxgYJBiNBxmw242tf+xoefPBBt49brVbcdNNN6OzsxO7du/GXv/wFr732Gv7rv/4rwC0Nf08++SSMRqP958c//rHaTQor27Ztw6pVq/DYY4+hsrISCxYswOLFi1FTU6N208La9OnTnc7rQ4cOqd2ksNPZ2YnLLrsMv/vd79w+/otf/ALPPPMMfve73+Gzzz5Deno6Fi1aZL8OW0QSKSj98Y9/FJOSklyWl5WViRqNRqyrq7Mve/XVV0WDwSC2trYGsIXhLTc3V/zNb36jdjPC2hVXXCGuXLnSadmUKVPENWvWqNSi8Pf444+Ll112mdrNiCgAxDfeeMN+32azienp6eLPfvYz+7Kenh4xKSlJfO6551RoYXBgZiTE7N27F4WFhcjMzLQvu/HGG2EymVBRUaFiy8LPz3/+c6SkpGDmzJn46U9/yq4wBZnNZlRUVKCkpMRpeUlJCfbs2aNSqyLDiRMnkJmZifz8fNx11104ffq02k2KKNXV1WhoaHA69w0GAxYuXBjR535IXCiP+jU0NCAtLc1pWXJyMqKiotDQ0KBSq8LPD37wA8yePRvJycn4z3/+g7Vr16K6uhovvPCC2k0LC01NTbBarS7nclpaGs9jP7ryyivx4osvYtKkSTh//jyeeuopzJs3D0eOHEFKSorazYsI8vnt7tw/e/asGk0KCsyMBIC7orGBP59//rnH2xMEwWWZKIpul1M/b/4OjzzyCBYuXIgZM2ZgxYoVeO6557BlyxY0Nzer/CrCy8Bzluexfy1evBh33HEHioqKcMMNN+Cdd94BAPzpT39SuWWRh+e+M2ZGAuChhx7CXXfdNeQ6eXl5Hm0rPT0dn376qdOyS5cuwWKxuETa5Gwkf4errroKAHDy5El+g1RAamoqtFqtSxaksbGR53EAxcXFoaioCCdOnFC7KRFDHr3U0NCAjIwM+/JIP/cZjARAamoqUlNTFdnW3Llz8dOf/hRGo9F+Im/fvh0GgwHFxcWK7CNcjeTvUFlZCQBObx7ku6ioKBQXF6O8vBxLly61Ly8vL8ett96qYssii8lkwtGjR7FgwQK1mxIx8vPzkZ6ejvLycsyaNQuAVEO1Y8cO/PznP1e5dephMBJkampqcPHiRdTU1MBqtWL//v0AgIKCAsTHx6OkpATTpk3DPffcg1/+8pe4ePEiHn30UXz3u99FYmKiuo0PE3v37sUnn3yC6667DklJSfjss8/wyCOP4Ctf+QpycnLUbl7YWL16Ne655x7MmTMHc+fOxfPPP4+amhqsXLlS7aaFrUcffRS33HILcnJy0NjYiKeeegptbW2477771G5aWOno6MDJkyft96urq7F//36MHj0aOTk5WLVqFZ5++mlMnDgREydOxNNPP43Y2FjcfffdKrZaZSqP5qEB7rvvPhGAy8+HH35oX+fs2bPiTTfdJMbExIijR48WH3roIbGnp0e9RoeZiooK8corrxSTkpLE6OhocfLkyeLjjz8udnZ2qt20sPPss8+Kubm5YlRUlDh79mxxx44dajcprC1btkzMyMgQ9Xq9mJmZKd5+++3ikSNH1G5W2Pnwww/dvo/fd999oihKw3sff/xxMT09XTQYDOI111wjHjp0SN1Gq0wQRVFUKxAiIiIi4mgaIiIiUhWDESIiIlIVgxEiIiJSFYMRIiIiUhWDESIiIlIVgxEiIiJSFYMRIiIiUhWDESIiIlIVgxEiIiJSFYMRIiIiUhWDESIiIlIVgxEiIiJS1f8HjTy23x0xYJsAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -262,7 +307,448 @@ "\n", "state = evecs[1]\n", "ChDist = np.array([np.sum((np.abs(state)[np.where(chrgs==r)[0]])**2) for r in range(-N*Ncut,N*Ncut+1)])\n", - "plt.plot(np.unique(chrgs),ChDist,'.-')" + "plt.plot(np.unique(chrgs),ChDist,'.-')\n", + "\n", + "plt.grid()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "70fadcc7-e03b-4d9e-92fe-170d66d1d2e5", + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "Quantum object: dims = [[7, 7, 7], [1, 1, 1]], shape = (343, 1), type = ket\\begin{equation*}\\left(\\begin{array}{*{11}c}(0.003-0.003j)\\\\(4.049\\times10^{-05}-3.740\\times10^{-05}j)\\\\(1.148\\times10^{-07}-1.060\\times10^{-07}j)\\\\(1.286\\times10^{-10}-1.188\\times10^{-10}j)\\\\0.0\\\\\\vdots\\\\0.0\\\\(1.286\\times10^{-10}-1.188\\times10^{-10}j)\\\\(1.148\\times10^{-07}-1.060\\times10^{-07}j)\\\\(4.049\\times10^{-05}-3.740\\times10^{-05}j)\\\\(0.003-0.003j)\\\\\\end{array}\\right)\\end{equation*}" + ], + "text/plain": [ + "Quantum object: dims = [[7, 7, 7], [1, 1, 1]], shape = (343, 1), type = ket\n", + "Qobj data =\n", + "[[2.81177574e-03-2.59687402e-03j]\n", + " [4.04924846e-05-3.73976771e-05j]\n", + " [1.14751365e-07-1.05981012e-07j]\n", + " [1.28611571e-10-1.18781905e-10j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [4.04924846e-05-3.73976771e-05j]\n", + " [1.82671212e-04-1.68709801e-04j]\n", + " [1.55541600e-06-1.43653683e-06j]\n", + " [3.16145489e-09-2.91982747e-09j]\n", + " [2.75375234e-12-2.54329861e-12j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [1.14751365e-07-1.05981012e-07j]\n", + " [1.55541600e-06-1.43653683e-06j]\n", + " [2.15776504e-06-1.99284882e-06j]\n", + " [1.20045413e-08-1.10870440e-08j]\n", + " [1.82738323e-11-1.68771718e-11j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [1.28611571e-10-1.18781905e-10j]\n", + " [3.16145488e-09-2.91982748e-09j]\n", + " [1.20045413e-08-1.10870440e-08j]\n", + " [5.54375253e-09-5.12004807e-09j]\n", + " [2.01786195e-11-1.86363808e-11j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [2.75375590e-12-2.54333343e-12j]\n", + " [1.82738275e-11-1.68771677e-11j]\n", + " [2.01786048e-11-1.86363954e-11j]\n", + " [2.23784083e-12-2.06683847e-12j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [4.04924846e-05-3.73976771e-05j]\n", + " [1.82671212e-04-1.68709801e-04j]\n", + " [1.55541600e-06-1.43653683e-06j]\n", + " [3.16145488e-09-2.91982748e-09j]\n", + " [2.75375590e-12-2.54333343e-12j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [1.82671212e-04-1.68709801e-04j]\n", + " [4.04644689e-02-3.73718026e-02j]\n", + " [4.90236725e-04-4.52768333e-04j]\n", + " [1.21541035e-06-1.12251753e-06j]\n", + " [1.21892268e-09-1.12576143e-09j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [1.55541600e-06-1.43653683e-06j]\n", + " [4.90236725e-04-4.52768333e-04j]\n", + " [1.49274310e-03-1.37865397e-03j]\n", + " [1.01889844e-05-9.41024870e-06j]\n", + " [1.76684703e-08-1.63180836e-08j]\n", + " [1.35429329e-11-1.25078551e-11j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [3.16145489e-09-2.91982747e-09j]\n", + " [1.21541035e-06-1.12251753e-06j]\n", + " [1.01889844e-05-9.41024870e-06j]\n", + " [7.46364604e-06-6.89320568e-06j]\n", + " [3.12018703e-08-2.88171369e-08j]\n", + " [3.91235944e-11-3.61334038e-11j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [2.75375234e-12-2.54329861e-12j]\n", + " [1.21892268e-09-1.12576143e-09j]\n", + " [1.76684703e-08-1.63180836e-08j]\n", + " [3.12018703e-08-2.88171368e-08j]\n", + " [4.90598563e-09-4.53102517e-09j]\n", + " [1.35429280e-11-1.25078522e-11j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [1.35429206e-11-1.25078448e-11j]\n", + " [3.91236068e-11-3.61334182e-11j]\n", + " [1.35429329e-11-1.25078553e-11j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [1.14751365e-07-1.05981012e-07j]\n", + " [1.55541600e-06-1.43653683e-06j]\n", + " [2.15776504e-06-1.99284882e-06j]\n", + " [1.20045413e-08-1.10870440e-08j]\n", + " [1.82738275e-11-1.68771677e-11j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [1.55541600e-06-1.43653683e-06j]\n", + " [4.90236725e-04-4.52768333e-04j]\n", + " [1.49274310e-03-1.37865397e-03j]\n", + " [1.01889844e-05-9.41024870e-06j]\n", + " [1.76684703e-08-1.63180836e-08j]\n", + " [1.35429206e-11-1.25078448e-11j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [2.15776504e-06-1.99284882e-06j]\n", + " [1.49274310e-03-1.37865397e-03j]\n", + " [2.76029113e-01-2.54932434e-01j]\n", + " [2.65831502e-03-2.45514217e-03j]\n", + " [5.58585310e-06-5.15893091e-06j]\n", + " [4.90598564e-09-4.53102520e-09j]\n", + " [2.23784917e-12-2.06682382e-12j]\n", + " [1.20045413e-08-1.10870440e-08j]\n", + " [1.01889844e-05-9.41024870e-06j]\n", + " [2.65831502e-03-2.45514217e-03j]\n", + " [4.34876742e-03-4.01639468e-03j]\n", + " [2.19698571e-05-2.02907189e-05j]\n", + " [3.12018703e-08-2.88171368e-08j]\n", + " [2.01786368e-11-1.86363750e-11j]\n", + " [1.82738323e-11-1.68771718e-11j]\n", + " [1.76684703e-08-1.63180836e-08j]\n", + " [5.58585310e-06-5.15893091e-06j]\n", + " [2.19698571e-05-2.02907189e-05j]\n", + " [5.58585310e-06-5.15893091e-06j]\n", + " [1.76684703e-08-1.63180836e-08j]\n", + " [1.82738265e-11-1.68771787e-11j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [1.35429329e-11-1.25078551e-11j]\n", + " [4.90598564e-09-4.53102520e-09j]\n", + " [3.12018703e-08-2.88171368e-08j]\n", + " [1.76684703e-08-1.63180835e-08j]\n", + " [1.21892270e-09-1.12576142e-09j]\n", + " [2.75373289e-12-2.54326038e-12j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [2.23784917e-12-2.06682382e-12j]\n", + " [2.01786173e-11-1.86363918e-11j]\n", + " [1.82738317e-11-1.68771675e-11j]\n", + " [2.75376479e-12-2.54329182e-12j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [1.28611571e-10-1.18781905e-10j]\n", + " [3.16145489e-09-2.91982747e-09j]\n", + " [1.20045413e-08-1.10870440e-08j]\n", + " [5.54375253e-09-5.12004807e-09j]\n", + " [2.01786048e-11-1.86363954e-11j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [3.16145488e-09-2.91982748e-09j]\n", + " [1.21541035e-06-1.12251753e-06j]\n", + " [1.01889844e-05-9.41024870e-06j]\n", + " [7.46364604e-06-6.89320568e-06j]\n", + " [3.12018703e-08-2.88171368e-08j]\n", + " [3.91236068e-11-3.61334182e-11j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [1.20045413e-08-1.10870440e-08j]\n", + " [1.01889844e-05-9.41024870e-06j]\n", + " [2.65831502e-03-2.45514217e-03j]\n", + " [4.34876742e-03-4.01639468e-03j]\n", + " [2.19698571e-05-2.02907189e-05j]\n", + " [3.12018703e-08-2.88171368e-08j]\n", + " [2.01786173e-11-1.86363918e-11j]\n", + " [5.54375253e-09-5.12004807e-09j]\n", + " [7.46364604e-06-6.89320568e-06j]\n", + " [4.34876742e-03-4.01639468e-03j]\n", + " [6.19535910e-01-5.72185287e-01j]\n", + " [4.34876742e-03-4.01639468e-03j]\n", + " [7.46364604e-06-6.89320568e-06j]\n", + " [5.54375253e-09-5.12004807e-09j]\n", + " [2.01786195e-11-1.86363808e-11j]\n", + " [3.12018703e-08-2.88171369e-08j]\n", + " [2.19698571e-05-2.02907189e-05j]\n", + " [4.34876742e-03-4.01639468e-03j]\n", + " [2.65831502e-03-2.45514217e-03j]\n", + " [1.01889844e-05-9.41024870e-06j]\n", + " [1.20045413e-08-1.10870440e-08j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [3.91235944e-11-3.61334038e-11j]\n", + " [3.12018703e-08-2.88171368e-08j]\n", + " [7.46364604e-06-6.89320568e-06j]\n", + " [1.01889844e-05-9.41024870e-06j]\n", + " [1.21541035e-06-1.12251753e-06j]\n", + " [3.16145488e-09-2.91982748e-09j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [2.01786368e-11-1.86363750e-11j]\n", + " [5.54375253e-09-5.12004807e-09j]\n", + " [1.20045413e-08-1.10870440e-08j]\n", + " [3.16145488e-09-2.91982747e-09j]\n", + " [1.28611579e-10-1.18781898e-10j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [2.75375234e-12-2.54329861e-12j]\n", + " [1.82738323e-11-1.68771718e-11j]\n", + " [2.01786195e-11-1.86363808e-11j]\n", + " [2.23784083e-12-2.06683847e-12j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [2.75375590e-12-2.54333343e-12j]\n", + " [1.21892268e-09-1.12576143e-09j]\n", + " [1.76684703e-08-1.63180836e-08j]\n", + " [3.12018703e-08-2.88171369e-08j]\n", + " [4.90598563e-09-4.53102517e-09j]\n", + " [1.35429329e-11-1.25078553e-11j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [1.82738275e-11-1.68771677e-11j]\n", + " [1.76684703e-08-1.63180836e-08j]\n", + " [5.58585310e-06-5.15893091e-06j]\n", + " [2.19698571e-05-2.02907189e-05j]\n", + " [5.58585310e-06-5.15893091e-06j]\n", + " [1.76684703e-08-1.63180835e-08j]\n", + " [1.82738317e-11-1.68771675e-11j]\n", + " [2.01786048e-11-1.86363954e-11j]\n", + " [3.12018703e-08-2.88171368e-08j]\n", + " [2.19698571e-05-2.02907189e-05j]\n", + " [4.34876742e-03-4.01639468e-03j]\n", + " [2.65831502e-03-2.45514217e-03j]\n", + " [1.01889844e-05-9.41024870e-06j]\n", + " [1.20045413e-08-1.10870440e-08j]\n", + " [2.23784083e-12-2.06683847e-12j]\n", + " [4.90598563e-09-4.53102517e-09j]\n", + " [5.58585310e-06-5.15893091e-06j]\n", + " [2.65831502e-03-2.45514217e-03j]\n", + " [2.76029113e-01-2.54932434e-01j]\n", + " [1.49274310e-03-1.37865397e-03j]\n", + " [2.15776504e-06-1.99284882e-06j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [1.35429280e-11-1.25078522e-11j]\n", + " [1.76684703e-08-1.63180836e-08j]\n", + " [1.01889844e-05-9.41024870e-06j]\n", + " [1.49274310e-03-1.37865397e-03j]\n", + " [4.90236725e-04-4.52768333e-04j]\n", + " [1.55541600e-06-1.43653683e-06j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [1.82738265e-11-1.68771787e-11j]\n", + " [1.20045413e-08-1.10870440e-08j]\n", + " [2.15776504e-06-1.99284882e-06j]\n", + " [1.55541600e-06-1.43653683e-06j]\n", + " [1.14751365e-07-1.05981012e-07j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [1.35429329e-11-1.25078551e-11j]\n", + " [3.91235944e-11-3.61334038e-11j]\n", + " [1.35429280e-11-1.25078522e-11j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [1.35429206e-11-1.25078448e-11j]\n", + " [4.90598564e-09-4.53102520e-09j]\n", + " [3.12018703e-08-2.88171368e-08j]\n", + " [1.76684703e-08-1.63180836e-08j]\n", + " [1.21892270e-09-1.12576142e-09j]\n", + " [2.75376479e-12-2.54329182e-12j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [3.91236068e-11-3.61334182e-11j]\n", + " [3.12018703e-08-2.88171368e-08j]\n", + " [7.46364604e-06-6.89320568e-06j]\n", + " [1.01889844e-05-9.41024870e-06j]\n", + " [1.21541035e-06-1.12251753e-06j]\n", + " [3.16145488e-09-2.91982747e-09j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [1.35429329e-11-1.25078553e-11j]\n", + " [1.76684703e-08-1.63180835e-08j]\n", + " [1.01889844e-05-9.41024870e-06j]\n", + " [1.49274310e-03-1.37865397e-03j]\n", + " [4.90236725e-04-4.52768333e-04j]\n", + " [1.55541600e-06-1.43653683e-06j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [1.21892270e-09-1.12576142e-09j]\n", + " [1.21541035e-06-1.12251753e-06j]\n", + " [4.90236725e-04-4.52768333e-04j]\n", + " [4.04644689e-02-3.73718026e-02j]\n", + " [1.82671212e-04-1.68709801e-04j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [2.75373289e-12-2.54326038e-12j]\n", + " [3.16145488e-09-2.91982748e-09j]\n", + " [1.55541600e-06-1.43653683e-06j]\n", + " [1.82671212e-04-1.68709801e-04j]\n", + " [4.04924846e-05-3.73976771e-05j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [2.23784917e-12-2.06682382e-12j]\n", + " [2.01786368e-11-1.86363750e-11j]\n", + " [1.82738265e-11-1.68771787e-11j]\n", + " [2.75373289e-12-2.54326038e-12j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [2.01786173e-11-1.86363918e-11j]\n", + " [5.54375253e-09-5.12004807e-09j]\n", + " [1.20045413e-08-1.10870440e-08j]\n", + " [3.16145488e-09-2.91982748e-09j]\n", + " [1.28611579e-10-1.18781898e-10j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [1.82738317e-11-1.68771675e-11j]\n", + " [1.20045413e-08-1.10870440e-08j]\n", + " [2.15776504e-06-1.99284882e-06j]\n", + " [1.55541600e-06-1.43653683e-06j]\n", + " [1.14751365e-07-1.05981012e-07j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [2.75376479e-12-2.54329182e-12j]\n", + " [3.16145488e-09-2.91982747e-09j]\n", + " [1.55541600e-06-1.43653683e-06j]\n", + " [1.82671212e-04-1.68709801e-04j]\n", + " [4.04924846e-05-3.73976771e-05j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [0.00000000e+00+0.00000000e+00j]\n", + " [1.28611579e-10-1.18781898e-10j]\n", + " [1.14751365e-07-1.05981012e-07j]\n", + " [4.04924846e-05-3.73976771e-05j]\n", + " [2.81177574e-03-2.59687402e-03j]]" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "symmetric_data[0][1][0]" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "b94380dd-bd75-4435-978b-adf53eb83387", + "metadata": {}, + "outputs": [], + "source": [ + "def ME(Bra,OP,Ket):\n", + " \n", + " \n", + " \n", + " MatrixElement2 = np.abs((Bra.dag()*OP*Ket).full()[0,0])**2 #e^2, in SI\n", + "\n", + " return MatrixElement2" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "c230eab3-d914-4379-8873-e6305643c24a", + "metadata": {}, + "outputs": [], + "source": [ + "Tp = qt.Qobj(np.diag(np.ones(2 * Ncut + 1 - 1), 1))\n", + "Tm = Tp.dag()\n", + "CosPhi = (Tp - Tm) / (2*1j)" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "123f3f35-3f6c-4ded-b36b-541feb4c4a72", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ME(symmetric_data[0][1][0],jja.Op(CosPhi,N,0),symmetric_data[2][1][2])" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "812d417c-97b9-461e-8f73-4af1d2ad8e02", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-4.45752331, 2.2094253 , 2.25507882, 2.25507882, 2.35038947,\n", + " 2.35038947, 2.39772538, 11.65443259, 11.65443259])" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "evals" ] }, { @@ -275,19 +761,19 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 75, "id": "3b9c1ff5-3a51-4f76-94ac-12464db874c7", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "35b4393fcf274325b1614c1f42ed3b80", + "model_id": "a7180d611d9d47ad80ab72d41a3ed124", "version_major": 2, "version_minor": 0 }, "text/plain": [ - " 0%| | 0/3 [00:00" ] @@ -336,8 +822,8 @@ "\n", "sm = V[0].shape[1]\n", "for i in range(1,N):\n", - " ax2.plot(np.arange(0,H.shape[0]),(sm-0.5)*np.ones(H.shape[0]))\n", - " ax2.plot((sm-0.5)*np.ones(H.shape[0]),np.arange(0,H.shape[0]))\n", + " ax2.plot(np.arange(0,H.shape[0]),(sm-0.5)*np.ones(H.shape[0]),'b')\n", + " ax2.plot((sm-0.5)*np.ones(H.shape[0]),np.arange(0,H.shape[0]),'b')\n", " sm = sm + V[i].shape[1]\n", " \n", "ax2.set_title('H in the symmetric basis', size = 20)"