@@ -38,7 +38,7 @@ Nearest neighbor and the curse of dimensionality
38
38
39
39
.. topic :: Classifying irises:
40
40
41
- .. image :: ../.. /auto_examples/datasets/images/sphx_glr_plot_iris_dataset_001.png
41
+ .. image :: /auto_examples/datasets/images/sphx_glr_plot_iris_dataset_001.png
42
42
:target: ../../auto_examples/datasets/plot_iris_dataset.html
43
43
:align: right
44
44
:scale: 65
@@ -75,7 +75,7 @@ Scikit-learn documentation for more information about this type of classifier.)
75
75
76
76
**KNN (k nearest neighbors) classification example **:
77
77
78
- .. image :: ../.. /auto_examples/neighbors/images/sphx_glr_plot_classification_001.png
78
+ .. image :: /auto_examples/neighbors/images/sphx_glr_plot_classification_001.png
79
79
:target: ../../auto_examples/neighbors/plot_classification.html
80
80
:align: center
81
81
:scale: 70
@@ -159,7 +159,7 @@ in its simplest form, fits a linear model to the data set by adjusting
159
159
a set of parameters in order to make the sum of the squared residuals
160
160
of the model as small as possible.
161
161
162
- .. image :: ../.. /auto_examples/linear_model/images/sphx_glr_plot_ols_001.png
162
+ .. image :: /auto_examples/linear_model/images/sphx_glr_plot_ols_001.png
163
163
:target: ../../auto_examples/linear_model/plot_ols.html
164
164
:scale: 40
165
165
:align: right
@@ -200,7 +200,7 @@ Shrinkage
200
200
If there are few data points per dimension, noise in the observations
201
201
induces high variance:
202
202
203
- .. image :: ../.. /auto_examples/linear_model/images/sphx_glr_plot_ols_ridge_variance_001.png
203
+ .. image :: /auto_examples/linear_model/images/sphx_glr_plot_ols_ridge_variance_001.png
204
204
:target: ../../auto_examples/linear_model/plot_ols_ridge_variance.html
205
205
:scale: 70
206
206
:align: right
@@ -229,7 +229,7 @@ regression coefficients to zero: any two randomly chosen set of
229
229
observations are likely to be uncorrelated. This is called :class: `Ridge `
230
230
regression:
231
231
232
- .. image :: ../.. /auto_examples/linear_model/images/sphx_glr_plot_ols_ridge_variance_002.png
232
+ .. image :: /auto_examples/linear_model/images/sphx_glr_plot_ols_ridge_variance_002.png
233
233
:target: ../../auto_examples/linear_model/plot_ols_ridge_variance.html
234
234
:scale: 70
235
235
:align: right
@@ -275,15 +275,15 @@ Sparsity
275
275
----------
276
276
277
277
278
- .. |diabetes_ols_1 | image :: ../.. /auto_examples/linear_model/images/sphx_glr_plot_ols_3d_001.png
278
+ .. |diabetes_ols_1 | image :: /auto_examples/linear_model/images/sphx_glr_plot_ols_3d_001.png
279
279
:target: ../../auto_examples/linear_model/plot_ols_3d.html
280
280
:scale: 65
281
281
282
- .. |diabetes_ols_3 | image :: ../.. /auto_examples/linear_model/images/sphx_glr_plot_ols_3d_003.png
282
+ .. |diabetes_ols_3 | image :: /auto_examples/linear_model/images/sphx_glr_plot_ols_3d_003.png
283
283
:target: ../../auto_examples/linear_model/plot_ols_3d.html
284
284
:scale: 65
285
285
286
- .. |diabetes_ols_2 | image :: ../.. /auto_examples/linear_model/images/sphx_glr_plot_ols_3d_002.png
286
+ .. |diabetes_ols_2 | image :: /auto_examples/linear_model/images/sphx_glr_plot_ols_3d_002.png
287
287
:target: ../../auto_examples/linear_model/plot_ols_3d.html
288
288
:scale: 65
289
289
@@ -350,7 +350,7 @@ application of Occam's razor: *prefer simpler models*.
350
350
Classification
351
351
---------------
352
352
353
- .. image :: ../.. /auto_examples/linear_model/images/sphx_glr_plot_logistic_001.png
353
+ .. image :: /auto_examples/linear_model/images/sphx_glr_plot_logistic_001.png
354
354
:target: ../../auto_examples/linear_model/plot_logistic.html
355
355
:scale: 65
356
356
:align: right
@@ -377,7 +377,7 @@ function or **logistic** function:
377
377
378
378
This is known as :class: `LogisticRegression `.
379
379
380
- .. image :: ../.. /auto_examples/linear_model/images/sphx_glr_plot_iris_logistic_001.png
380
+ .. image :: /auto_examples/linear_model/images/sphx_glr_plot_iris_logistic_001.png
381
381
:target: ../../auto_examples/linear_model/plot_iris_logistic.html
382
382
:scale: 83
383
383
@@ -425,11 +425,11 @@ the separating line (less regularization).
425
425
426
426
.. currentmodule :: sklearn.svm
427
427
428
- .. |svm_margin_unreg | image :: ../.. /auto_examples/svm/images/sphx_glr_plot_svm_margin_001.png
428
+ .. |svm_margin_unreg | image :: /auto_examples/svm/images/sphx_glr_plot_svm_margin_001.png
429
429
:target: ../../auto_examples/svm/plot_svm_margin.html
430
430
:scale: 70
431
431
432
- .. |svm_margin_reg | image :: ../.. /auto_examples/svm/images/sphx_glr_plot_svm_margin_002.png
432
+ .. |svm_margin_reg | image :: /auto_examples/svm/images/sphx_glr_plot_svm_margin_002.png
433
433
:target: ../../auto_examples/svm/plot_svm_margin.html
434
434
:scale: 70
435
435
@@ -476,11 +476,11 @@ build a decision function that is not linear but may be polynomial instead.
476
476
This is done using the *kernel trick * that can be seen as
477
477
creating a decision energy by positioning *kernels * on observations:
478
478
479
- .. |svm_kernel_linear | image :: ../.. /auto_examples/svm/images/sphx_glr_plot_svm_kernels_001.png
479
+ .. |svm_kernel_linear | image :: /auto_examples/svm/images/sphx_glr_plot_svm_kernels_001.png
480
480
:target: ../../auto_examples/svm/plot_svm_kernels.html
481
481
:scale: 65
482
482
483
- .. |svm_kernel_poly | image :: ../.. /auto_examples/svm/images/sphx_glr_plot_svm_kernels_002.png
483
+ .. |svm_kernel_poly | image :: /auto_examples/svm/images/sphx_glr_plot_svm_kernels_002.png
484
484
:target: ../../auto_examples/svm/plot_svm_kernels.html
485
485
:scale: 65
486
486
@@ -518,7 +518,7 @@ creating a decision energy by positioning *kernels* on observations:
518
518
519
519
520
520
521
- .. |svm_kernel_rbf | image :: ../.. /auto_examples/svm/images/sphx_glr_plot_svm_kernels_003.png
521
+ .. |svm_kernel_rbf | image :: /auto_examples/svm/images/sphx_glr_plot_svm_kernels_003.png
522
522
:target: ../../auto_examples/svm/plot_svm_kernels.html
523
523
:scale: 65
524
524
@@ -551,7 +551,7 @@ creating a decision energy by positioning *kernels* on observations:
551
551
``svm_gui.py ``; add data points of both classes with right and left button,
552
552
fit the model and change parameters and data.
553
553
554
- .. image :: ../.. /auto_examples/datasets/images/sphx_glr_plot_iris_dataset_001.png
554
+ .. image :: /auto_examples/datasets/images/sphx_glr_plot_iris_dataset_001.png
555
555
:target: ../../auto_examples/datasets/plot_iris_dataset.html
556
556
:align: right
557
557
:scale: 70
0 commit comments