title | category |
---|---|
TiSpark 快速入门指南 |
tispark |
为了让大家快速体验 TiSpark,通过 TiDB-Ansible 安装的 TiDB 集群中默认已集成 Spark、TiSpark jar 包及 TiSpark sample data。
-
Spark 默认部署在 TiDB 实例部署目录下 spark 目录中
-
TiSpark jar 包默认部署在 Spark 部署目录 jars 文件夹下:
spark/jars/tispark-SNAPSHOT-jar-with-dependencies.jar
-
TiSpark sample data 及导入脚本默认部署在 TiDB-Ansible 目录下:
tidb-ansible/resources/bin/tispark-sample-data
在 Oracle JDK 官方下载页面 下载 JDK 1.8 当前最新版,本示例中下载的版本为 jdk-8u141-linux-x64.tar.gz
。
解压并根据您的 JDK 部署目录设置环境变量,
编辑 ~/.bashrc
文件,比如:
export JAVA_HOME=/home/pingcap/jdk1.8.0_144
export PATH=$JAVA_HOME/bin:$PATH
验证 JDK 有效性:
$ java -version
java version "1.8.0_144"
Java(TM) SE Runtime Environment (build 1.8.0_144-b01)
Java HotSpot(TM) 64-Bit Server VM (build 25.144-b01, mixed mode)
假设 TiDB 集群已启动,其中一台 TiDB 实例服务 IP 为 192.168.0.2,端口为 4000,用户名为 root, 密码为空。
cd tidb-ansible/resources/bin/tispark-sample-data
修改 sample_data.sh
中 TiDB 登录信息,比如:
mysql --local-infile=1 -h 192.168.0.2 -P 4000 -u root < dss.ddl
执行脚本
./sample_data.sh
执行脚本的机器上需要安装 MySQL client,CentOS 用户可通过
yum -y install mysql
来安装。
登录 TiDB 并验证数据包含 TPCH_001
库及以下表:
$ mysql -uroot -P4000 -h192.168.0.2
MySQL [(none)]> show databases;
+--------------------+
| Database |
+--------------------+
| INFORMATION_SCHEMA |
| PERFORMANCE_SCHEMA |
| TPCH_001 |
| mysql |
| test |
+--------------------+
5 rows in set (0.00 sec)
MySQL [(none)]> use TPCH_001
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A
Database changed
MySQL [TPCH_001]> show tables;
+--------------------+
| Tables_in_TPCH_001 |
+--------------------+
| CUSTOMER |
| LINEITEM |
| NATION |
| ORDERS |
| PART |
| PARTSUPP |
| REGION |
| SUPPLIER |
+--------------------+
8 rows in set (0.00 sec)
进入 spark 部署目录启动 spark-shell:
$ cd spark
$ bin/spark-shell
scala> import org.apache.spark.sql.TiContext
scala> val ti = new TiContext(spark)
// Mapping all TiDB tables from `TPCH_001` database as Spark SQL tables
scala> ti.tidbMapDatabase("TPCH_001")
之后您可以直接调用 Spark SQL:
scala> spark.sql("select count(*) from lineitem").show
结果为
+--------+
|count(1)|
+--------+
| 60175|
+--------+
下面执行另一个复杂一点的 Spark SQL:
scala> spark.sql(
"""select
| l_returnflag,
| l_linestatus,
| sum(l_quantity) as sum_qty,
| sum(l_extendedprice) as sum_base_price,
| sum(l_extendedprice * (1 - l_discount)) as sum_disc_price,
| sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge,
| avg(l_quantity) as avg_qty,
| avg(l_extendedprice) as avg_price,
| avg(l_discount) as avg_disc,
| count(*) as count_order
|from
| lineitem
|where
| l_shipdate <= date '1998-12-01' - interval '90' day
|group by
| l_returnflag,
| l_linestatus
|order by
| l_returnflag,
| l_linestatus
""".stripMargin).show
结果为:
+------------+------------+---------+--------------+--------------+
|l_returnflag|l_linestatus| sum_qty|sum_base_price|sum_disc_price|
+------------+------------+---------+--------------+--------------+
| A| F|380456.00| 532348211.65|505822441.4861|
| N| F| 8971.00| 12384801.37| 11798257.2080|
| N| O|742802.00| 1041502841.45|989737518.6346|
| R| F|381449.00| 534594445.35|507996454.4067|
+------------+------------+---------+--------------+--------------+
(续)
-----------------+---------+------------+--------+-----------+
sum_charge| avg_qty| avg_price|avg_disc|count_order|
-----------------+---------+------------+--------+-----------+
526165934.000839|25.575155|35785.709307|0.050081| 14876|
12282485.056933|25.778736|35588.509684|0.047759| 348|
1029418531.523350|25.454988|35691.129209|0.049931| 29181|
528524219.358903|25.597168|35874.006533|0.049828| 14902|
-----------------+---------+------------+--------+-----------+
更多样例请参考 https://github.com/ilovesoup/tpch/tree/master/sparksql