Skip to content

Implementation of MVMM in PyTorch for KITTI 3D Object Detetcion

Notifications You must be signed in to change notification settings

shangjie-li/mvmm

Repository files navigation

mvmm

Implementation of MVMM in PyTorch for KITTI 3D Object Detetcion

Acknowledgement

  • This repository is developed based on open-mmlab's work.

Installation

  • Clone this repository
    git clone git@github.com:shangjie-li/mvmm.git
    
  • Install PyTorch environment with Anaconda (Tested on Ubuntu 16.04 & CUDA 10.2)
    conda create -n mvmm python=3.6
    conda activate mvmm
    cd mvmm
    pip install -r requirements.txt
    
  • Install spconv
    pip install spconv-cu102
    
  • Compile external modules
    cd mvmm
    python setup.py develop
    

KITTI3D Dataset (41.5GB)

  • Download KITTI3D dataset: calib, velodyne, label_2 and image_2.
  • Download road plane for data augmentation.
  • Organize the downloaded files as follows
    mvmm
    ├── data
    │   ├── kitti
    │   │   │── ImageSets
    │   │   │   ├──test.txt & train.txt & trainval.txt & val.txt
    │   │   │── training
    │   │   │   ├──calib & velodyne & label_2 & image_2 & planes
    │   │   │── testing
    │   │   │   ├──calib & velodyne & image_2
    ├── helpers
    ├── layers
    ├── ops
    ├── utils
    
  • Generate ground truth databases and data infos by running the following command
    # This will create two database dirs and six info files in mvmm/data/kitti (Take 20 mins).
    cd mvmm
    python -m data.kitti_dataset create_kitti_infos
    
  • Display the dataset
    # Display the dataset and show annotations in the range image
    python dataset_player.py --augment_data --show_boxes --onto_range_image
    
    # Display the dataset and show annotations in point clouds
    python dataset_player.py --augment_data --show_boxes
    

Demo

  • Run the demo with a trained model
    # Show detections in the RGB image
    python demo.py --checkpoint=checkpoints/checkpoint_epoch_80.pth --show_boxes --onto_image
    
    # Show detections in point clouds
    python demo.py --checkpoint=checkpoints/checkpoint_epoch_80.pth --show_boxes
    

Training

  • Train your model using the following commands
    python train.py
    

Evaluation

  • Evaluate your model using the following commands
    python test.py
    

About

Implementation of MVMM in PyTorch for KITTI 3D Object Detetcion

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published