forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_activation.py
30 lines (23 loc) · 902 Bytes
/
test_activation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import torch
import torch.nn.functional as F
from vllm import activation_ops
def ref_silu_and_mul(x: torch.Tensor) -> torch.Tensor:
x1, x2 = x.chunk(chunks=2, dim=1)
return F.silu(x1) * x2
@torch.inference_mode()
def run_silu_and_mul(
num_tokens: int,
d: int,
dtype: torch.dtype,
) -> None:
x = torch.randn(num_tokens, 2 * d, dtype=dtype, device='cuda')
out = torch.empty(num_tokens, d, dtype=dtype, device='cuda')
activation_ops.silu_and_mul(out, x)
ref_out = ref_silu_and_mul(x)
assert torch.allclose(out, ref_out, atol=1e-5, rtol=1e-5)
def test_silu_and_mul() -> None:
for dtype in [torch.half, torch.bfloat16, torch.float]:
for num_tokens in [7, 83, 2048]:
for d in [512, 4096, 5120, 13824]:
print(f'Testing dtype={dtype}, num_tokens={num_tokens}, d={d}')
run_silu_and_mul(num_tokens, d, dtype)