-
Notifications
You must be signed in to change notification settings - Fork 0
/
symspell.py
348 lines (295 loc) · 13 KB
/
symspell.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import re
max_edit_distance = 3
verbose = 0
# 0: top suggestion
# 1: all suggestions of smallest edit distance
# 2: all suggestions <= max_edit_distance (slower, no early termination)
dictionary = {}
longest_word_length = 0
def get_deletes_list(w):
'''given a word, derive strings with up to max_edit_distance characters
deleted'''
deletes = []
queue = [w]
for d in range(max_edit_distance):
temp_queue = []
for word in queue:
if len(word)>1:
for c in range(len(word)): # character index
word_minus_c = word[:c] + word[c+1:]
if word_minus_c not in deletes:
deletes.append(word_minus_c)
if word_minus_c not in temp_queue:
temp_queue.append(word_minus_c)
queue = temp_queue
return deletes
def create_dictionary_entry(w):
'''add word and its derived deletions to dictionary'''
# check if word is already in dictionary
# dictionary entries are in the form: (list of suggested corrections,
# frequency of word in corpus)
global longest_word_length
new_real_word_added = False
if w in dictionary:
# increment count of word in corpus
dictionary[w] = (dictionary[w][0], dictionary[w][1] + 1)
else:
dictionary[w] = ([], 1)
longest_word_length = max(longest_word_length, len(w))
if dictionary[w][1]==1:
# first appearance of word in corpus
# n.b. word may already be in dictionary as a derived word
# (deleting character from a real word)
# but counter of frequency of word in corpus is not incremented
# in those cases)
new_real_word_added = True
deletes = get_deletes_list(w)
for item in deletes:
if item in dictionary:
# add (correct) word to delete's suggested correction list
dictionary[item][0].append(w)
else:
# note frequency of word in corpus is not incremented
dictionary[item] = ([w], 0)
return new_real_word_added
def create_dictionary(fname):
total_word_count = 0
unique_word_count = 0
with open(fname) as file:
print ("Creating dictionary..." )
for line in file:
# separate by words by non-alphabetical characters
words = re.findall('[a-z]+', line.lower())
for word in words:
total_word_count += 1
if create_dictionary_entry(word):
unique_word_count += 1
print ("total words processed: %i" % total_word_count)
print ("total unique words in corpus: %i" % unique_word_count)
print ("total items in dictionary (corpus words and deletions): %i" % len(dictionary))
print (" edit distance for deletions: %i" % max_edit_distance)
print (" length of longest word in corpus: %i" % longest_word_length)
return dictionary
def dameraulevenshtein(seq1, seq2):
"""Calculate the Damerau-Levenshtein distance between sequences.
This method has not been modified from the original.
Source: http://mwh.geek.nz/2009/04/26/python-damerau-levenshtein-distance/
This distance is the number of additions, deletions, substitutions,
and transpositions needed to transform the first sequence into the
second. Although generally used with strings, any sequences of
comparable objects will work.
Transpositions are exchanges of *consecutive* characters; all other
operations are self-explanatory.
This implementation is O(N*M) time and O(M) space, for N and M the
lengths of the two sequences.
>>> dameraulevenshtein('ba', 'abc')
2
>>> dameraulevenshtein('fee', 'deed')
2
It works with arbitrary sequences too:
>>> dameraulevenshtein('abcd', ['b', 'a', 'c', 'd', 'e'])
2
"""
# codesnippet:D0DE4716-B6E6-4161-9219-2903BF8F547F
# Conceptually, this is based on a len(seq1) + 1 * len(seq2) + 1 matrix.
# However, only the current and two previous rows are needed at once,
# so we only store those.
oneago = None
# thisrow = range(1, len(seq2) + 1) + [0]
lenseq2 = len(seq2) + 1
thisrow = list(range(1, lenseq2))
thisrow.append(0)
for x in range(len(seq1)):
# Python lists wrap around for negative indices, so put the
# leftmost column at the *end* of the list. This matches with
# the zero-indexed strings and saves extra calculation.
twoago, oneago, thisrow = oneago, thisrow, [0] * len(seq2) + [x + 1]
for y in range(len(seq2)):
delcost = oneago[y] + 1
addcost = thisrow[y - 1] + 1
subcost = oneago[y - 1] + (seq1[x] != seq2[y])
thisrow[y] = min(delcost, addcost, subcost)
# This block deals with transpositions
if (x > 0 and y > 0 and seq1[x] == seq2[y - 1]
and seq1[x-1] == seq2[y] and seq1[x] != seq2[y]):
thisrow[y] = min(thisrow[y], twoago[y - 2] + 1)
return thisrow[len(seq2) - 1]
def get_suggestions(string, silent=False):
'''return list of suggested corrections for potentially incorrectly
spelled word'''
if (len(string) - longest_word_length) > max_edit_distance:
if not silent:
print ("no items in dictionary within maximum edit distance")
return []
global verbose
suggest_dict = {}
min_suggest_len = float('inf')
queue = [string]
q_dictionary = {} # items other than string that we've checked
while len(queue)>0:
q_item = queue[0] # pop
queue = queue[1:]
# early exit
if ((verbose<2) and (len(suggest_dict)>0) and
((len(string)-len(q_item))>min_suggest_len)):
break
# process queue item
if (q_item in dictionary) and (q_item not in suggest_dict):
if (dictionary[q_item][1]>0):
# word is in dictionary, and is a word from the corpus, and
# not already in suggestion list so add to suggestion
# dictionary, indexed by the word with value (frequency in
# corpus, edit distance)
# note q_items that are not the input string are shorter
# than input string since only deletes are added (unless
# manual dictionary corrections are added)
assert len(string)>=len(q_item)
suggest_dict[q_item] = (dictionary[q_item][1],
len(string) - len(q_item))
# early exit
if ((verbose<2) and (len(string)==len(q_item))):
break
elif (len(string) - len(q_item)) < min_suggest_len:
min_suggest_len = len(string) - len(q_item)
# the suggested corrections for q_item as stored in
# dictionary (whether or not q_item itself is a valid word
# or merely a delete) can be valid corrections
for sc_item in dictionary[q_item][0]:
if (sc_item not in suggest_dict):
# compute edit distance
# suggested items should always be longer
# (unless manual corrections are added)
assert len(sc_item)>len(q_item)
# q_items that are not input should be shorter
# than original string
# (unless manual corrections added)
assert len(q_item)<=len(string)
if len(q_item)==len(string):
assert q_item==string
item_dist = len(sc_item) - len(q_item)
# item in suggestions list should not be the same as
# the string itself
assert sc_item!=string
# calculate edit distance using, for example,
# Damerau-Levenshtein distance
item_dist = dameraulevenshtein(sc_item, string)
# do not add words with greater edit distance if
# verbose setting not on
if ((verbose<2) and (item_dist>min_suggest_len)):
pass
elif item_dist<=max_edit_distance:
assert sc_item in dictionary # should already be in dictionary if in suggestion list
suggest_dict[sc_item] = (dictionary[sc_item][1], item_dist)
if item_dist < min_suggest_len:
min_suggest_len = item_dist
# depending on order words are processed, some words
# with different edit distances may be entered into
# suggestions; trim suggestion dictionary if verbose
# setting not on
if verbose<2:
suggest_dict = {k:v for k, v in suggest_dict.items() if v[1]<=min_suggest_len}
# now generate deletes (e.g. a substring of string or of a delete)
# from the queue item
# as additional items to check -- add to end of queue
assert len(string)>=len(q_item)
# do not add words with greater edit distance if verbose setting
# is not on
if ((verbose<2) and ((len(string)-len(q_item))>min_suggest_len)):
pass
elif (len(string)-len(q_item))<max_edit_distance and len(q_item)>1:
for c in range(len(q_item)): # character index
word_minus_c = q_item[:c] + q_item[c+1:]
if word_minus_c not in q_dictionary:
queue.append(word_minus_c)
q_dictionary[word_minus_c] = None # arbitrary value, just to identify we checked this
# queue is now empty: convert suggestions in dictionary to
# list for output
if not silent and verbose!=0:
print ("number of possible corrections: %i" %len(suggest_dict))
print (" edit distance for deletions: %i" % max_edit_distance)
# output option 1
# sort results by ascending order of edit distance and descending
# order of frequency
# and return list of suggested word corrections only:
# return sorted(suggest_dict, key = lambda x:
# (suggest_dict[x][1], -suggest_dict[x][0]))
# output option 2
# return list of suggestions with (correction,
# (frequency in corpus, edit distance)):
as_list = suggest_dict.items()
# outlist = sorted(as_list, key=lambda(term, (freq, dist)): (dist, -freq))
# outlist = sorted(as_list, key=lambda (freq, dist): dist, -freq)
outlist = sorted(as_list, key=lambda tfd: (tfd[1][0], -tfd[1][1]))
if (verbose==0 and outlist != []):
return outlist[0]
else:
return outlist
'''
Option 1:
['file', 'five', 'fire', 'fine', ...]
Option 2:
[('file', (5, 0)),
('five', (67, 1)),
('fire', (54, 1)),
('fine', (17, 1))...]
'''
def best_word(s, silent=False):
try:
return get_suggestions(s, silent)[0]
except:
return None
def correct_document(fname, printlist=True):
# correct an entire document
with open(fname) as file:
doc_word_count = 0
corrected_word_count = 0
unknown_word_count = 0
print ("Finding misspelled words in your document..." )
for i, line in enumerate(file):
# separate by words by non-alphabetical characters
doc_words = re.findall('[a-z]+', line.lower())
for doc_word in doc_words:
doc_word_count += 1
suggestion = best_word(doc_word, silent=True)
if suggestion is None:
if printlist:
print("In line {}, the word < {} > was not found (no suggested correction)".format(i, doc_word))
unknown_word_count += 1
elif suggestion[0]!=doc_word:
if printlist:
print ("In line {}, {}: suggested correction is < {} >".format(i, doc_word, suggestion[0]))
corrected_word_count += 1
print( "-----")
print ("total words checked: %i" % doc_word_count)
print( "total unknown words: %i" % unknown_word_count)
print ("total potential errors found: %i" % corrected_word_count)
return
## main
import time
if __name__ == "__main__":
print ("Please wait...")
time.sleep(2)
start_time = time.time()
try:
create_dictionary("big.txt")
except:
create_dictionary("testdata/big.txt")
run_time = time.time() - start_time
print ('-----')
print ('%.2f seconds to run' % run_time)
print ('-----')
print (" ")
print ("Word correction")
print ("---------------")
while True:
word_in = input('Enter your input (or enter to exit): ')
if len(word_in)==0:
print ("goodbye")
break
start_time = time.time()
print (get_suggestions(word_in))
run_time = time.time() - start_time
print ('-----')
print ('%.5f seconds to run' % run_time)
print ('-----')
print (" ")