|
| 1 | +""" |
| 2 | +module for testing the functions `clean_language()` and `validate_language()`. |
| 3 | +""" |
| 4 | + |
| 5 | +import logging |
| 6 | + |
| 7 | +from os import path |
| 8 | + |
| 9 | +import numpy as np |
| 10 | +import pandas as pd |
| 11 | +import pytest |
| 12 | + |
| 13 | +from ...clean import clean_language, validate_language |
| 14 | + |
| 15 | +LOGGER = logging.getLogger(__name__) |
| 16 | + |
| 17 | +ALTERNATIVE_LANGUAGE_DATA_FILE = path.join( |
| 18 | + path.split(path.abspath(__file__))[0], "test_language_data.csv" |
| 19 | +) |
| 20 | + |
| 21 | + |
| 22 | +@pytest.fixture(scope="module") # type: ignore |
| 23 | +def df_languages() -> pd.DataFrame: |
| 24 | + df = pd.DataFrame( |
| 25 | + { |
| 26 | + "messy_language": [ |
| 27 | + "eng", |
| 28 | + "zh", |
| 29 | + "Japanese", |
| 30 | + "english", |
| 31 | + "Zh", |
| 32 | + "tp", |
| 33 | + "233", |
| 34 | + 304, |
| 35 | + "dd eng", |
| 36 | + " tr ", |
| 37 | + "hello", |
| 38 | + np.nan, |
| 39 | + "NULL", |
| 40 | + ] |
| 41 | + } |
| 42 | + ) |
| 43 | + return df |
| 44 | + |
| 45 | + |
| 46 | +@pytest.fixture(scope="module") # type: ignore |
| 47 | +def df_multicols_languages() -> pd.DataFrame: |
| 48 | + df = pd.DataFrame( |
| 49 | + { |
| 50 | + "some_messy_language": [ |
| 51 | + "eng", |
| 52 | + "zh", |
| 53 | + "Japanese", |
| 54 | + "english", |
| 55 | + "Zh", |
| 56 | + "tp", |
| 57 | + ], |
| 58 | + "other_messy_language": [ |
| 59 | + "233", |
| 60 | + 304, |
| 61 | + " tr ", |
| 62 | + "hello", |
| 63 | + np.nan, |
| 64 | + "NULL", |
| 65 | + ], |
| 66 | + } |
| 67 | + ) |
| 68 | + return df |
| 69 | + |
| 70 | + |
| 71 | +def test_clean_default(df_languages: pd.DataFrame) -> None: |
| 72 | + df_clean = clean_language(df_languages, "messy_language") |
| 73 | + df_check = df_languages.copy() |
| 74 | + df_check["messy_language_clean"] = [ |
| 75 | + "English", |
| 76 | + "Chinese", |
| 77 | + "Japanese", |
| 78 | + "English", |
| 79 | + "Chinese", |
| 80 | + np.nan, |
| 81 | + np.nan, |
| 82 | + np.nan, |
| 83 | + np.nan, |
| 84 | + "Turkish", |
| 85 | + np.nan, |
| 86 | + np.nan, |
| 87 | + np.nan, |
| 88 | + ] |
| 89 | + |
| 90 | + assert df_check.equals(df_clean) |
| 91 | + |
| 92 | + |
| 93 | +def test_clean_input_formats(df_languages: pd.DataFrame) -> None: |
| 94 | + df_clean_name = clean_language(df_languages, "messy_language", input_format="name") |
| 95 | + df_clean_alpha2 = clean_language(df_languages, "messy_language", input_format="alpha-2") |
| 96 | + df_clean_alpha3 = clean_language(df_languages, "messy_language", input_format="alpha-3") |
| 97 | + |
| 98 | + df_check_name = df_languages.copy() |
| 99 | + df_check_name["messy_language_clean"] = [ |
| 100 | + np.nan, |
| 101 | + np.nan, |
| 102 | + "Japanese", |
| 103 | + "English", |
| 104 | + np.nan, |
| 105 | + np.nan, |
| 106 | + np.nan, |
| 107 | + np.nan, |
| 108 | + np.nan, |
| 109 | + np.nan, |
| 110 | + np.nan, |
| 111 | + np.nan, |
| 112 | + np.nan, |
| 113 | + ] |
| 114 | + df_check_alpha2 = df_languages.copy() |
| 115 | + df_check_alpha2["messy_language_clean"] = [ |
| 116 | + np.nan, |
| 117 | + "Chinese", |
| 118 | + np.nan, |
| 119 | + np.nan, |
| 120 | + "Chinese", |
| 121 | + np.nan, |
| 122 | + np.nan, |
| 123 | + np.nan, |
| 124 | + np.nan, |
| 125 | + "Turkish", |
| 126 | + np.nan, |
| 127 | + np.nan, |
| 128 | + np.nan, |
| 129 | + ] |
| 130 | + df_check_alpha3 = df_languages.copy() |
| 131 | + df_check_alpha3["messy_language_clean"] = [ |
| 132 | + "English", |
| 133 | + np.nan, |
| 134 | + np.nan, |
| 135 | + np.nan, |
| 136 | + np.nan, |
| 137 | + np.nan, |
| 138 | + np.nan, |
| 139 | + np.nan, |
| 140 | + np.nan, |
| 141 | + np.nan, |
| 142 | + np.nan, |
| 143 | + np.nan, |
| 144 | + np.nan, |
| 145 | + ] |
| 146 | + |
| 147 | + assert df_clean_name.equals(df_check_name) |
| 148 | + assert df_clean_alpha2.equals(df_check_alpha2) |
| 149 | + assert df_clean_alpha3.equals(df_check_alpha3) |
| 150 | + |
| 151 | + |
| 152 | +def test_clean_input_format_tuple(df_languages: pd.DataFrame) -> None: |
| 153 | + df_clean = clean_language(df_languages, "messy_language", input_format=("name", "alpha-3")) |
| 154 | + df_check = df_languages.copy() |
| 155 | + df_check["messy_language_clean"] = [ |
| 156 | + "English", |
| 157 | + np.nan, |
| 158 | + "Japanese", |
| 159 | + "English", |
| 160 | + np.nan, |
| 161 | + np.nan, |
| 162 | + np.nan, |
| 163 | + np.nan, |
| 164 | + np.nan, |
| 165 | + np.nan, |
| 166 | + np.nan, |
| 167 | + np.nan, |
| 168 | + np.nan, |
| 169 | + ] |
| 170 | + |
| 171 | + assert df_check.equals(df_clean) |
| 172 | + |
| 173 | + |
| 174 | +def test_clean_output_format(df_languages: pd.DataFrame) -> None: |
| 175 | + df_clean_name = clean_language(df_languages, "messy_language", output_format="name") |
| 176 | + df_clean_alpha2 = clean_language(df_languages, "messy_language", output_format="alpha-2") |
| 177 | + df_clean_alpha3 = clean_language(df_languages, "messy_language", output_format="alpha-3") |
| 178 | + |
| 179 | + df_check_name = df_languages.copy() |
| 180 | + df_check_name["messy_language_clean"] = [ |
| 181 | + "English", |
| 182 | + "Chinese", |
| 183 | + "Japanese", |
| 184 | + "English", |
| 185 | + "Chinese", |
| 186 | + np.nan, |
| 187 | + np.nan, |
| 188 | + np.nan, |
| 189 | + np.nan, |
| 190 | + "Turkish", |
| 191 | + np.nan, |
| 192 | + np.nan, |
| 193 | + np.nan, |
| 194 | + ] |
| 195 | + df_check_alpha2 = df_languages.copy() |
| 196 | + df_check_alpha2["messy_language_clean"] = [ |
| 197 | + "en", |
| 198 | + "zh", |
| 199 | + "ja", |
| 200 | + "en", |
| 201 | + "zh", |
| 202 | + np.nan, |
| 203 | + np.nan, |
| 204 | + np.nan, |
| 205 | + np.nan, |
| 206 | + "tr", |
| 207 | + np.nan, |
| 208 | + np.nan, |
| 209 | + np.nan, |
| 210 | + ] |
| 211 | + df_check_alpha3 = df_languages.copy() |
| 212 | + df_check_alpha3["messy_language_clean"] = [ |
| 213 | + "eng", |
| 214 | + "zho", |
| 215 | + "jpn", |
| 216 | + "eng", |
| 217 | + "zho", |
| 218 | + np.nan, |
| 219 | + np.nan, |
| 220 | + np.nan, |
| 221 | + np.nan, |
| 222 | + "tur", |
| 223 | + np.nan, |
| 224 | + np.nan, |
| 225 | + np.nan, |
| 226 | + ] |
| 227 | + |
| 228 | + assert df_clean_name.equals(df_check_name) |
| 229 | + assert df_clean_alpha2.equals(df_check_alpha2) |
| 230 | + assert df_clean_alpha3.equals(df_check_alpha3) |
| 231 | + |
| 232 | + |
| 233 | +def test_clean_kb(df_languages: pd.DataFrame) -> None: |
| 234 | + df_clean = clean_language( |
| 235 | + df_languages, "messy_language", kb_path=ALTERNATIVE_LANGUAGE_DATA_FILE |
| 236 | + ) |
| 237 | + df_check = df_languages.copy() |
| 238 | + df_check["messy_language_clean"] = [ |
| 239 | + "English", |
| 240 | + "Chinese", |
| 241 | + "Japanese", |
| 242 | + "English", |
| 243 | + "Chinese", |
| 244 | + np.nan, |
| 245 | + np.nan, |
| 246 | + np.nan, |
| 247 | + np.nan, |
| 248 | + np.nan, |
| 249 | + np.nan, |
| 250 | + np.nan, |
| 251 | + np.nan, |
| 252 | + ] |
| 253 | + |
| 254 | + assert df_check.equals(df_clean) |
| 255 | + |
| 256 | + |
| 257 | +def test_validate_value() -> None: |
| 258 | + assert validate_language("english") == True |
| 259 | + assert validate_language("zh") == True |
| 260 | + assert validate_language(" ZH ") == True |
| 261 | + assert validate_language("tp") == False |
| 262 | + assert validate_language("eng") == True |
| 263 | + assert validate_language("hello") == False |
| 264 | + assert validate_language("233") == False |
| 265 | + assert validate_language("dd eng") == False |
| 266 | + assert validate_language("") == False |
| 267 | + |
| 268 | + |
| 269 | +def test_validate_series(df_languages: pd.DataFrame) -> None: |
| 270 | + srs_valid = validate_language(df_languages["messy_language"]) |
| 271 | + srs_check = pd.Series( |
| 272 | + [ |
| 273 | + True, |
| 274 | + True, |
| 275 | + True, |
| 276 | + True, |
| 277 | + True, |
| 278 | + False, |
| 279 | + False, |
| 280 | + False, |
| 281 | + False, |
| 282 | + True, |
| 283 | + False, |
| 284 | + False, |
| 285 | + False, |
| 286 | + ], |
| 287 | + name="messy_language", |
| 288 | + ) |
| 289 | + assert srs_check.equals(srs_valid) |
| 290 | + |
| 291 | + |
| 292 | +def test_validate_input_format(df_languages: pd.DataFrame) -> None: |
| 293 | + srs_valid = validate_language(df_languages["messy_language"], input_format="alpha-2") |
| 294 | + srs_check = pd.Series( |
| 295 | + [ |
| 296 | + False, |
| 297 | + True, |
| 298 | + False, |
| 299 | + False, |
| 300 | + True, |
| 301 | + False, |
| 302 | + False, |
| 303 | + False, |
| 304 | + False, |
| 305 | + True, |
| 306 | + False, |
| 307 | + False, |
| 308 | + False, |
| 309 | + ], |
| 310 | + name="messy_language", |
| 311 | + ) |
| 312 | + assert srs_check.equals(srs_valid) |
| 313 | + |
| 314 | + |
| 315 | +def test_validate_dataframe_col(df_multicols_languages: pd.DataFrame) -> None: |
| 316 | + srs_valid = validate_language(df_multicols_languages, "some_messy_language") |
| 317 | + srs_check = pd.Series( |
| 318 | + [ |
| 319 | + True, |
| 320 | + True, |
| 321 | + True, |
| 322 | + True, |
| 323 | + True, |
| 324 | + False, |
| 325 | + ], |
| 326 | + name="some_messy_language", |
| 327 | + ) |
| 328 | + assert srs_check.equals(srs_valid) |
| 329 | + |
| 330 | + |
| 331 | +def test_validate_dataframe_all(df_multicols_languages: pd.DataFrame) -> None: |
| 332 | + df_valid = validate_language(df_multicols_languages) |
| 333 | + df_check = pd.DataFrame() |
| 334 | + |
| 335 | + df_check["some_messy_language"] = [ |
| 336 | + True, |
| 337 | + True, |
| 338 | + True, |
| 339 | + True, |
| 340 | + True, |
| 341 | + False, |
| 342 | + ] |
| 343 | + df_check["other_messy_language"] = [ |
| 344 | + False, |
| 345 | + False, |
| 346 | + True, |
| 347 | + False, |
| 348 | + False, |
| 349 | + False, |
| 350 | + ] |
| 351 | + |
| 352 | + assert df_check.equals(df_valid) |
| 353 | + |
| 354 | + |
| 355 | +def test_validate_kb(df_languages: pd.DataFrame) -> None: |
| 356 | + srs_valid = validate_language( |
| 357 | + df_languages["messy_language"], kb_path=ALTERNATIVE_LANGUAGE_DATA_FILE |
| 358 | + ) |
| 359 | + srs_check = pd.Series( |
| 360 | + [ |
| 361 | + True, |
| 362 | + True, |
| 363 | + True, |
| 364 | + True, |
| 365 | + True, |
| 366 | + False, |
| 367 | + False, |
| 368 | + False, |
| 369 | + False, |
| 370 | + False, |
| 371 | + False, |
| 372 | + False, |
| 373 | + False, |
| 374 | + ], |
| 375 | + name="messy_language", |
| 376 | + ) |
| 377 | + assert srs_check.equals(srs_valid) |
0 commit comments