-
Notifications
You must be signed in to change notification settings - Fork 3
/
example-talk.tex
242 lines (220 loc) · 7.87 KB
/
example-talk.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
% This text is Free and open Open Source.
% It's a part of presentation made by myself.
% It may be used only for academic purpose
% May, 2012
% Author: Seshagiri Prabhu
% Amrita Vishwa Vidyapeethm
% seshagiriprabhu@gmail.com
% www.seshagiriprabhu.wordpress.com
\documentclass[12pt]{beamer}
\usetheme{Oxygen}
\usepackage{thumbpdf}
\usepackage{wasysym}
\usepackage{ucs}
\usepackage[utf8]{inputenc}
\usepackage{pgf,pgfarrows,pgfnodes,pgfautomata,pgfheaps,pgfshade}
\usepackage{verbatim}
\usepackage{listings}
\usepackage{courier}
\usepackage{caption}
\usepackage{verbatim}
\usepackage{upquote}
\usepackage{graphics}
\usepackage{latexsym}
\usepackage{fixltx2e}
\usepackage{hyperref}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{mathtools}
\usepackage{pgf}
\usepackage{fmtcount}% http://ctan.org/pkg/fmtcount
\usepackage{algorithm, algpseudocode}
\usepackage{caption}
\captionsetup[algorithm]{font=scriptsize}
\usepackage{lipsum}
\newcommand\Fontvi{\fontsize{5}{6}\selectfont}
%\renewcommand\tinyv{\@setfontsize\tinyv{4pt}{6}}
%\renewcommand\tiny{\@setfontsize\tiny{4pt}{6}}
\usepackage{xcolor}
\def\SPSB#1#2{\rlap{\textsuperscript{\textcolor{red}{#1}}}\SB{#2}}
\def\SP#1{\textsuperscript{\textcolor{red}{#1}}}
\def\SB#1{\textsubscript{\textcolor{blue}{#1}}}
\pdfinfo
{
/Title (Computing the Modular Inverse of a Polynomial Function over GF(2^{P}) Using Bit Wise Operation)
/Creator (Seshagiri Prabhu N)
/Author (TeX)
}
\title{Computing the Modular Inverse of a Polynomial Function over GF($2^\textsuperscript{P}$)\\ Using Bit Wise Operation}
%\subtitle{Basic Introduction}
\author{Seshagiri Prabhu N}
\institute[Amrita Vishwa Vidyapeetham] % (optional)
{
\begin{center}
M.Tech, Cyber Security and Networks (First Year)\\
Amrita School of Engineering,
Amritapuri Campus
\end{center}
}
%\newcounter{mycounter}%
%\newcommand{\binnum}[2][4]{%
% \setcounter{mycounter}{\numexpr #2\relax}%
% \padzeroes[#1]{\binary{mycounter}}%
%}
\begin{document}
\frame{\titlepage}
\section*{}
\begin{frame}
\frametitle{Outline}
\tableofcontents[section=1,hidesubsections]
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% Content starts here %%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Introduction}
\begin{frame}{timebomb}
\frametitle{Introduction}
\begin{enumerate}
\item Relevance of Modulo arithmetic in public key crypto system
\item The use of \textbf{E}xtended \textbf{E}uclidean \textbf{A}lgorithm (\textbf{EEA}) to evaluate the multiplicative inverse
\end{enumerate}
\end{frame}
\section{Contribution of this paper}
\begin{frame}
\frametitle{Contribution of this paper}
\begin{block}{Contribution of this paper}
Computerized algorithm for the determination of the multiplicative inverse of a polynomial over GF(2\SP{P}) using simple bit wise shift and XOR operations.
\end{block}
\end{frame}
\section{Problem Description}
\begin{frame}
\frametitle{Problem Description}
\begin{block}{EEA}
Let \textcolor{red}{$A(x)$} and \textcolor{red}{$B(x)$} be polynomials.\\
EEA gives \textcolor{red}{$U$} and \textcolor{red}{$V$} such that\\
$\gcd{(A, B)} = U*A + V*B$
\end{block}
\begin{block}{Note}
If \textcolor{red}{$A$} is irreducible, then its $\gcd$ is \textcolor{red}{$1$}, and we are only
interested in \textcolor{red}{$V$}, which is the inverse of \textcolor{red}{$B [mod A]$}
\end{block}
\end{frame}
\begin{frame}
\frametitle{Problem Description}
\begin{block}{Polynomial representation}
The finite field is a representative of a polynomial function with respect to one variable x: \\
GF(2\SP{p}) = x\SP{p-1} + x\SP{p-2} + \dots + x\SP{2} + x\SP{1}
\end{block}
\begin{block}{Example}
Finite field GF(2\SP{8}) = x\SP{8} + x\SP{4} + x\SP{3} + x + 1 \\
53\SB{10} $\rightarrow$ $1010011$\SB{2} $\rightarrow$ (x\SP{6} + x\SP{4} + x + 1) \\
The EEA of 53 on GF(2\SP{8}) is x\SP{7} + x\SP{6} + x\SP{3} + x
\end{block}
\end{frame}
\section{Proposed Algorithm}
\begin{frame}[fragile]
\frametitle{Proposed Algorithm}
\begin{algorithm}[H]
%\algsetup{linenosize=\tiny}
\tiny
\label{euclid}
\begin{algorithmic}
\Procedure{Multiplicative Inverse}{$A_{3}[\hspace{1mm}]$, $B_{3}[\hspace{1mm}]$}
\State $C\SB{1} = A\SB{2} = B\SB{2} = 0$;
\While {($B\SB{3} \textgreater 1$)} \Comment{Step 1 do}
\State $Q = 0$;
\State $Temp = B\SB{3}$;
\While {($A\SB{}3 > Temp \parallel BitSize(C) \geq BitSize(Temp)$)}
\State $Q\SB{1} = 1$;
\While {($A\SB{3MSB} == B\SB{3MSB}$)}
\State $B\SB{3} = B\SB{3} << LinearLeftShift$ ;
\State $Q\SB{1} = Q\SB{1} * 2$;
\EndWhile
\State $Q = Q + Q\SB{1}$;
\State $A\SB{3} = A\SB{3}[\hspace{1mm}] \oplus B\SB{3}[\hspace{1mm}]$;
\State $B\SB{3} = Temp$;
\EndWhile
\State $A\SB{2} = B\SB{2}; B\SB{3} = A\SB{3}; A\SB{3} = Temp$;
\State $N = BitSize(Q)$; \Comment {Binary Bit Size of Q}
\State $Temp = B\SB{2}; C\SB{2}=0;$\Comment {Step2}
\While{($N\geq1$)}
\State $C\SB{2} = 0\SB{d}$;
\If {($Q\SB{N}==1$)}\Comment {Testing if Nth bit of Q is 1}
\State $C\SB{1}=B\SB{2}<< N-1$; \Comment{Linear left shift by N-1 times}
\State $C\SB{2} = C\SB{2}\oplus C\SB{1}$;
\EndIf
\State $N--$;
\EndWhile
\State $B\SB{2} = C\SB{2}; A\SB{2} = Temp; B\SB{2}=B\SB{2} \oplus A\SB{2};$ \Comment {Multiplicative Inverse}
\EndWhile
\EndProcedure
\end{algorithmic}
% \caption{\tiny {Euclidean Algorithm}}
\end{algorithm}
\end{frame}
\section{Implementation of Algorithm}
\begin{frame}
\frametitle{Implementation of Algorithm}
\framesubtitle{Let's apply EEA to A = 283 and B = 42}
\tiny
\begin{center}
\begin{tabular}{| l | c | c | r | r |}
\hline
i & Operation & Binary & U & V \\ \hline
0 & $A$ & $100011011$ & 1 & 0 \\ \hline
1 & $B$ & $000101010$ & 0 & 1 \\ \hline
& $3<<B$ & $101010000$ & 0 & 1000 \\
2 & $A \leftarrow A \oplus (3<<B)$ & $001001011$ & 1 & 1000 \\ \hline
& $1<<B$ & $001010100$ & 0 & 0010 \\
3 & $A \leftarrow A \oplus (1<<B)$ & $000011111$ & 1 & 1010 \\ \hline
& $A<B \hspace{1mm} A \rightleftharpoons B$ & & & \\
& $A$ & $000101010$ & 00 & 00001 \\
& $B$ & $000011111$ & 01 & 01010 \\
& $1<<B$ & $000111110$ & 10 & 10100 \\
4 & $A \leftarrow A \oplus (1<<B)$ & $000010100$ & 10 & 10101 \\ \hline
& $A<B \hspace{1mm} A \rightleftharpoons B$ & & & \\
& $A$ & $000011111$ & 01 & 01010 \\
& $B$ & $000010100$ & 10 & 10101 \\
5 & $A \leftarrow A \oplus B$ & $000001011$ & 11 & 11111 \\ \hline
& $A<B \hspace{1mm} A \rightleftharpoons B$ & & & \\
& $A$ & $000010100$ & 010 & 010101 \\
& $B$ & $000001011$ & 011 & 011111 \\
& $1<<B$ & $000010110$ & 110 & 111110 \\
6 & $A \leftarrow A \oplus (1<<B)$ & $000000010$ & 100 & 101011 \\ \hline
& $A<B \hspace{1mm} A \rightleftharpoons B$ & & & \\
& $A$ & $000001011$ & 00011 & 00011111 \\
& $B$ & $000000010$ & 00100 & 00101011 \\
& $2<<B)$ & $000001000$ & 10000 & 10101100 \\
7 & $A \leftarrow A \oplus (1<<B)$ & $000000011$ & 10011 & 10110011 \\ \hline
8 & $A \leftarrow A \oplus B$ & $000000001$ & 10111 & 10011000 \\ \hline
\end{tabular}
\end{center}
\end{frame}
\section{Conclusion}
\begin{frame}
\frametitle{Conclusion}
\begin{enumerate}
\item This algorithm can be easily extended for determining the elements of the S-Box used in $AES$.
\item This algorithm is efficient for determining the multiplicative inverse of polynomial over $GF(2\SP{P})$
\end{enumerate}
\end{frame}
\begin{frame}
\frametitle{Future works}
\begin{block}{Possible future works}
\begin{enumerate}
\item Optimize the algorithm
\item Comparative study with many existing algorithm
\item Implementation in hardware for real time applications
\end{enumerate}
\end{block}
\end{frame}
\frame{
\vspace{2cm}
{\huge Questions ?}
\vspace{3cm}
\begin{flushright}
Seshagiri Prabhu
\structure{\footnotesize{seshagiriprabhu@gmail.com}}
\end{flushright}
}
\end{document}