Skip to content

HyperaPy: An automatic hyperparameter optimization framework ⚡🚀

License

Notifications You must be signed in to change notification settings

sergiomora03/py-hyperpy

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

88 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

HyperPy: An automatic hyperparameter optimization framework

PyPI - Status Documentation Status GitHub top language GitHub PyPI - Python Version PyPI - Wheel

👶current version: PyPI version

Description

contributions welcome

HyperPy: Library for automatic hyperparameter optimization. Build on top of Optuna to perform hyperparameter optimization with low code.

This library corresponds to part of the work of Sergio A. Mora Pardo

Installation

GitHub Release Date GitHub last commit

You can install hyperpy with pip:

# pip install py-hyperpy

Example

Import the library:

Read library

import hyperpy as hy

Run the optimization:

running=hy.run(feat_X, Y)
study = running.buildStudy()

See the results:

print("best params: ", study.best_params)
print("best test accuracy: ", study.best_value)
best_params, best_value = hy.results.results(study)

NOTE

  • The function hy.run() return a Study object. And only needs: Features, target. In the example: best test accuracy = 0.7407407164573669
  • feat_X: features in dataset
  • Y: target in dataset

IMPORTANT

At moment only solves binary clasification problems.

Documentation

Documentation is available at hyperpy

Working on tutorial, meanwhile explore documentation.

Development GitHub issues GitHub issues

Source code is available at hyperpy

Contact

Buy Me A Coffee