|
| 1 | +// Solution by Sergey Leschev |
| 2 | +// 2097. Valid Arrangement of Pairs |
| 3 | + |
| 4 | +// Time Complexity: O(m+n), where m == pairs.size(), and n is the number of nodes in the graph (the number of distinct numbers in pairs) |
| 5 | +// Space Complexity: O(m+n) |
| 6 | + |
| 7 | +function validArrangement(pairs: number[][]): number[][] { |
| 8 | + const adj: Map<number, number[]> = new Map() |
| 9 | + const inDegree: Map<number, number> = new Map() |
| 10 | + const outDegree: Map<number, number> = new Map() |
| 11 | + |
| 12 | + // Build adjacency list and in/out-degree maps |
| 13 | + for (const [u, v] of pairs) { |
| 14 | + if (!adj.has(u)) adj.set(u, []) |
| 15 | + adj.get(u)!.push(v) |
| 16 | + |
| 17 | + outDegree.set(u, (outDegree.get(u) || 0) + 1) |
| 18 | + inDegree.set(v, (inDegree.get(v) || 0) + 1) |
| 19 | + } |
| 20 | + |
| 21 | + // Find starting node |
| 22 | + let start = -1 |
| 23 | + for (const [node] of adj) { |
| 24 | + const out = outDegree.get(node) || 0 |
| 25 | + const inD = inDegree.get(node) || 0 |
| 26 | + if (out - inD === 1) { |
| 27 | + start = node |
| 28 | + break |
| 29 | + } |
| 30 | + } |
| 31 | + |
| 32 | + if (start === -1) { |
| 33 | + // Eulerian circuit: start from any node |
| 34 | + start = pairs[0][0] |
| 35 | + } |
| 36 | + |
| 37 | + const result: number[][] = [] |
| 38 | + const stack: number[] = [start] |
| 39 | + |
| 40 | + // Perform Eulerian path |
| 41 | + while (stack.length > 0) { |
| 42 | + const curr = stack[stack.length - 1] |
| 43 | + |
| 44 | + if (adj.has(curr) && adj.get(curr)!.length > 0) { |
| 45 | + const next = adj.get(curr)!.pop()! |
| 46 | + stack.push(next) |
| 47 | + } else { |
| 48 | + stack.pop() |
| 49 | + if (stack.length > 0) { |
| 50 | + result.push([stack[stack.length - 1], curr]) |
| 51 | + } |
| 52 | + } |
| 53 | + } |
| 54 | + |
| 55 | + return result.reverse() |
| 56 | +} |
0 commit comments