-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmovequeue.py
executable file
·446 lines (389 loc) · 15.4 KB
/
movequeue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
#!/usr/bin/env python3
from nmigen import *
from nmigen.lib.fifo import SyncFIFOBuffered
from random import randrange, seed
from nmigen.hdl.rec import *
class Scheduler(Elaboratable):
def __init__(self, *, width):
self.width = width
self.requests = Signal(width)
self.grant = Signal(width)
self.grant_enc= Signal(range(width))
self.valid = Signal()
self.capture = Signal(width)
self.en = Signal()
def elaborate(self, platform):
m = Module()
capture = Signal(self.width)
m.d.comb += capture.eq(self.capture)
with m.If(self.capture.any() == 0):
m.d.comb += capture.eq(self.requests)
for i in range(self.width):
with m.If(capture & (1 << i)):
m.d.comb += self.grant.eq(1 << i)
m.d.comb += self.grant_enc.eq(i)
m.d.comb += self.valid.eq(1)
with m.If(self.en):
m.d.sync += self.capture.eq(capture & ~(1 << i))
return m
class MoveQueueLayout(Layout):
def __init__(self, *, width, channels):
super().__init__([
#
# Input side ports
#
# writer has to hold req with all data 0 until ack goes high
# with ack high, it has to deassert req and output the date with
# the next clock for exactly one clock
#
# initiator -> movequeue
("in_data", unsigned(width), DIR_FANIN),
("in_req", unsigned(channels), DIR_NONE),
# movequeue -> initiator
("in_ack", unsigned(channels), DIR_NONE),
#
# Output side ports
#
# requestor has to hold req until valid goes high
# with valid high, it has to latch the data with the next clock
# and deassert req
#
# receptor -> movequeue
("out_req", unsigned(channels), DIR_NONE),
# movequeue -> receptor
("out_data", unsigned(width), DIR_FANOUT),
("out_valid", unsigned(channels), DIR_NONE),
("empty", unsigned(channels), DIR_NONE),
])
class MoveQueue(Elaboratable):
def __init__(self, width=72, entries_bits=9):
# Config
self.width = width
self.entries_bits = entries_bits
self.entries = 2 ** entries_bits
self.clients = []
def configure(self):
# call after all modules have registered
channels = sum(map(lambda x: x['channels'], self.clients))
self.bus = Record(MoveQueueLayout(width=self.width, channels=channels))
def register(self, *, channels=1):
bus = Record(MoveQueueLayout(width=self.width, channels=channels))
self.clients.append({ 'bus': bus, 'channels': channels })
return bus
def elaborate(self, platform):
m = Module()
entries = self.entries
entries_bits = self.entries_bits
channels = sum(map(lambda x: x['channels'], self.clients))
# whether the channel list is empty
empty = Signal(channels, reset=2 ** channels - 1)
bus = self.bus
# stitch up busses
m.d.comb += bus.connect(*map(lambda x: x['bus'], self.clients),
exclude=['in_req', 'in_ack', 'out_req', 'out_valid', 'empty'])
i = 0
for c in self.clients:
b = c['bus']
for j in range(c['channels']):
m.d.comb += bus.in_req[i].eq(b.in_req[j])
m.d.comb += bus.out_req[i].eq(b.out_req[j])
m.d.comb += b.in_ack[j].eq(bus.in_ack[i])
m.d.comb += b.out_valid[j].eq(bus.out_valid[i])
m.d.comb += b.empty[j].eq(empty[i])
i = i + 1
# State
slots = Memory(width=self.width, depth=entries)
slots_r = slots.read_port()
slots_w = slots.write_port()
m.submodules += [ slots_r, slots_w]
ptrs = Memory(width=entries_bits, depth=entries)
ptrs_r = ptrs.read_port()
ptrs_w = ptrs.write_port()
m.submodules += [ ptrs_r, ptrs_w]
# Free fifo
free_fifo = SyncFIFOBuffered(width=entries_bits, depth=entries,
init=[i for i in range(entries - 1)])
m.submodules += free_fifo
# Per-channel pointered list heads/tails
heads = Memory(width=entries_bits, depth=channels)
heads_r = heads.read_port(domain='comb')
heads_w = heads.write_port()
m.submodules += [ heads_r, heads_w ]
tails = Memory(width=entries_bits, depth=channels)
tails_r = tails.read_port(domain='comb')
tails_w = tails.write_port()
m.submodules += [ tails_r, tails_w ]
w_chan = Signal(range(channels))
w_elem = Signal(entries_bits)
n_r_chan = Signal(range(channels))
r_chan = Signal(range(channels))
n_r_elem = Signal(entries_bits)
r_elem = Signal(entries_bits)
w_sched = Scheduler(width=channels)
m.submodules += w_sched
m.d.comb += w_sched.requests.eq(bus.in_req)
r_sched = Scheduler(width=channels)
m.submodules += r_sched
m.d.comb += r_sched.requests.eq(bus.out_req & ~empty)
phase = Signal()
r_active = Signal()
w_active = Signal()
#
# The Grand Plan
#
# writer phase one:
# if (free.rdy && req)
# elem := free.pop
# if (!empty) slot[elem] := data
# ptrs[tail] := elem
# tail := elem -- write and write in the same cycle, port
# -- must not be transparent
# if (emtpy) head := elem
# empty := false
# write phase two:
# nada
# reader phase one:
# if (req && !empty)
# elem := head
# trigger read of ptrs[elem]
# trigger read of slot[elem]
# active := true
# reader phase two:
# if active
# out := slot[elem]
# head := ptrs[elem] -- we expect the potential newly written
# -- data from phase one here
# if (elem == tail) empty := true
# free.push(elem)
#
# remark: the lines below are moved here, but also left in their
# original place below, marked with (*)
m.d.comb += slots_w.addr.eq(w_elem)
m.d.comb += slots_w.data.eq(bus.in_data)
m.d.comb += ptrs_w.addr.eq(tails_r.data)
m.d.comb += ptrs_w.data.eq(w_elem)
m.d.comb += tails_w.addr.eq(w_chan)
m.d.comb += tails_w.data.eq(w_elem)
m.d.comb += heads_r.addr.eq(n_r_chan)
m.d.comb += n_r_elem.eq(heads_r.data)
m.d.sync += r_elem.eq(n_r_elem)
m.d.comb += ptrs_r.addr.eq(n_r_elem)
m.d.comb += slots_r.addr.eq(n_r_elem)
m.d.comb += bus.out_data.eq(slots_r.data)
m.d.comb += free_fifo.w_data.eq(r_elem)
with m.If(phase == 0):
#
# writer phase one
#
with m.If(w_active):
# elem := free.pop
m.d.comb += w_elem.eq(free_fifo.r_data)
m.d.comb += free_fifo.r_en.eq(1)
# slot[elem] := data
# address and data already set up for slot
#m.d.comb += slots_w.addr.eq(w_elem) # (*)
#m.d.comb += slots_w.data.eq(bus.in_data) # (*)
m.d.comb += slots_w.en.eq(1)
# ptrs[tail] := elem
m.d.comb += tails_r.addr.eq(w_chan)
#m.d.comb += ptrs_w.addr.eq(tails_r.data) # (*)
#m.d.comb += ptrs_w.data.eq(w_elem) # (*)
with m.If((empty & (1 << w_chan)) == 0):
m.d.comb += ptrs_w.en.eq(1)
# tail := elem
#m.d.comb += tails_w.addr.eq(w_chan) # (*)
#m.d.comb += tails_w.data.eq(w_elem) # (*)
m.d.comb += tails_w.en.eq(1)
# if (emtpy) head := elem
with m.If(empty & (1 << w_chan)):
m.d.comb += heads_w.addr.eq(w_chan)
m.d.comb += heads_w.data.eq(w_elem)
m.d.comb += heads_w.en.eq(1)
# empty := false
m.d.sync += empty.eq(empty & ~(1 << w_chan))
m.d.sync += w_active.eq(0)
with m.If(phase == 1):
#
# write phase two
#
with m.If(free_fifo.r_rdy & w_sched.valid):
m.d.sync += w_chan.eq(w_sched.grant_enc)
m.d.comb += bus.in_ack.eq(w_sched.grant)
m.d.sync += w_active.eq(1)
m.d.comb += w_sched.en.eq(1)
with m.If(phase == 0):
#
# reader phase one
#
with m.If(r_sched.valid):
m.d.comb += n_r_chan.eq(r_sched.grant_enc)
m.d.sync += r_chan.eq(n_r_chan)
m.d.comb += r_sched.en.eq(1)
# elem := head
#m.d.comb += heads_r.addr.eq(n_r_chan) # (*)
#m.d.comb += n_r_elem.eq(heads_r.data) # (*)
#m.d.sync += r_elem.eq(n_r_elem) # (*)
# trigger read of ptrs[elem]
#m.d.comb += ptrs_r.addr.eq(n_r_elem) # (*)
# trigger read of slot[elem]
#m.d.comb += slots_r.addr.eq(n_r_elem) # (*)
# active := true
m.d.sync += r_active.eq(1)
with m.If(phase == 1):
#
# reader phase two
#
with m.If(r_active):
# out := slot[elem]
#m.d.comb += bus.out_data.eq(slots_r.data) # (*)
m.d.comb += bus.out_valid.eq(1 << r_chan)
# head := ptrs[elem]
m.d.comb += heads_w.addr.eq(r_chan)
m.d.comb += heads_w.data.eq(ptrs_r.data)
m.d.comb += heads_w.en.eq(1)
# if (elem == tail) empty := true
m.d.comb += tails_r.addr.eq(r_chan)
with m.If(r_elem == tails_r.data):
m.d.sync += empty.eq(empty | (1 << r_chan))
# free.push(elem)
#m.d.comb += free_fifo.w_data.eq(r_elem) # (*)
m.d.comb += free_fifo.w_en.eq(1)
# we could assert free_fifo.w_rdy == 1
m.d.sync += r_active.eq(0)
m.d.sync += phase.eq(~phase)
# for invariant checker
#self.heads = heads
#self.tails = tails
#self.slots = slots
#self.fifo = free_fifo
#self.empty = empty
#self.ptrs = ptrs
#self.in_data = in_data
#self.in_req = in_req
#self.in_ack = in_ack
#self.out_data = out_data
#self.out_valid = out_valid
#self.out_req = out_req
return m
from nmigen.sim import *
from nmigen.back import verilog
if __name__ == "__main__":
channels = 30
entries_bits = 9
entries = 2 ** entries_bits
seed(0)
mq = MoveQueue(width=72, entries_bits=entries_bits)
bus = mq.register(channels=channels)
mq.configure()
def fail(msg):
print(msg)
raise("simulation abort")
def wait_for_signal(sig, val):
i = 0
while ((yield sig) != val):
if i == 10000:
fail("signal never asserted")
i = i + 1
yield
def wait(delay):
for i in range(delay):
yield
def make_data(chan, seq):
return (chan << 64) | (seq << 48) | (0xcafe << 32)
# one process per channel
# send pseudo-random data with channel + seq in it
# delay 0-300 cycles
# repeat n times
def producer_gen(in_req, in_ack, in_data, chan, n):
def producer():
for seq in range(n):
data = make_data(chan, seq)
yield in_req.eq(1)
yield from wait_for_signal(in_ack, 1)
yield in_data.eq(data)
yield in_req.eq(0)
yield
yield in_data.eq(0)
yield
print("chan %d seq %x data %x" % (chan, seq, data))
delay = randrange(1, 2 * (n - seq))
#delay = randrange(1, 10)
yield from wait(delay)
print("producer %d done" % chan)
return producer
# one process per channel
# receive + check data
# delay 0-200 cycles
# repeat n times
def consumer_gen(out_req, out_valid, out_data, chan, n, initial):
def consumer():
for _ in range(initial):
yield
for seq in range(n):
data = make_data(chan, seq)
yield out_req.eq(1)
yield from wait_for_signal(out_valid, 1)
data = yield out_data
if data != make_data(chan, seq):
fail("unexpected data %x on chan %d seq %d" %
(data, chan, seq))
yield out_req.eq(0)
yield
delay = randrange(1, 2 * n)
#delay = randrange(1, 20)
yield from wait(delay)
print("consumer %d done" % chan)
return consumer
def invariant_checker():
yield Passive()
while (True):
if (yield bus.in_ack[4]) == 0 and (yield bus.out_valid[4]) == 0:
yield
continue
# check chain head->tail
# check slots in chain: correct channel, in seq
empty = yield mq.empty
visited = {}
#for ch in range(channels):
for ch in [4]:
if (empty & (1 << ch)):
continue
p = yield mq.heads[ch]
seq = None
chain = []
while (p != (yield mq.tails[ch])):
chain.append(p)
if (p in visited):
fail("node %d already visited (ch %d)" % (p, ch))
visited[p] = 1
s = yield mq.slots[p]
if ((s >> 64) != ch):
print(chain)
fail("data for wrong channel in chain %d, slot %d/%x" %
(ch, p, s))
rs = (s >> 48) & 65535
if (seq is not None):
if (rs != seq + 1):
print(chain)
fail("data not in sequence (%d/%d) in chain %d, "
"slot %d/%x" % (rs, seq + 1, ch, p, s))
seq = rs
p = yield mq.ptrs[p]
print("chain 4: %s" % chain)
yield
sim = Simulator(mq)
sim.add_clock(1e-6)
channels = 6
for ch in range(channels):
sim.add_sync_process(producer_gen(bus.in_req[ch], bus.in_ack[ch],
bus.in_data, ch, 750))
for ch in range(channels):
sim.add_sync_process(consumer_gen(bus.out_req[ch], bus.out_valid[ch],
bus.out_data, ch, 750, 0))
#sim.add_sync_process(invariant_checker)
#with sim.write_vcd("movequeue.vcd"):
# sim.run()
with open("gen_movequeue.v", "w") as f:
f.write(verilog.convert(mq, name='gen_movequeue', ports=[
mq.bus.in_data, mq.bus.in_req, mq.bus.in_ack,
mq.bus.out_data, mq.bus.out_valid, mq.bus.out_req]))