@@ -31,14 +31,50 @@ mmMatrix_per_latent <- function(latent, mmMatrix) {
3131 return (latentmatrix )
3232}
3333
34- # Factorial weighting scheme Function to create inner paths matrix
34+ # ' Inner weighting scheme functions to estimate inner paths matrix
35+ # '
36+ # ' \code{path_factorial} and \code{path_weighting} specify the inner weighting scheme to be used in the estimation of the
37+ # ' inner paths matrix
38+ # '
39+ # ' @param smMatrix is the \code{structural_model} - a source-to-target matrix representing the inner/structural model,
40+ # ' generated by \code{relationships}.
41+ # '
42+ # ' @param fscores is the matrix of construct scores generated by \code{simplePLS}.
43+ # '
44+ # ' @param dependant is the vector of dependant constructs in the model.
45+ # '
46+ # ' @param paths_matrix is the matrix of estimated path coefficients estimated by \code{simplePLS}.
47+ # '
48+ # ' @usage
49+ # ' path_factorial(smMatrix,fscores, dependant, paths_matrix)
50+ # '
51+ # ' @references Lohmoller, J.-B. (1989). Latent variables path modeling with partial least squares. Heidelberg, Germany: Physica- Verlag.
52+ # '
3553# ' @export
3654path_factorial <- function (smMatrix ,fscores , dependant , paths_matrix ) {
3755 inner_paths <- stats :: cor(fscores ,fscores ) * (paths_matrix + t(paths_matrix ))
3856 return (inner_paths )
3957}
4058
41- # Factorial weighting scheme Function to create inner paths matrix
59+ # ' Inner weighting scheme functions to estimate inner paths matrix
60+ # '
61+ # ' \code{path_factorial} and \code{path_weighting} specify the inner weighting scheme to be used in the estimation of the
62+ # ' inner paths matrix
63+ # '
64+ # ' @param smMatrix is the \code{structural_model} - a source-to-target matrix representing the inner/structural model,
65+ # ' generated by \code{relationships}.
66+ # '
67+ # ' @param fscores is the matrix of construct scores generated by \code{simplePLS}.
68+ # '
69+ # ' @param dependant is the vector of dependant constructs in the model.
70+ # '
71+ # ' @param paths_matrix is the matrix of estimated path coefficients estimated by \code{simplePLS}.
72+ # '
73+ # ' @usage
74+ # ' path_weighting(smMatrix,fscores, dependant, paths_matrix)
75+ # '
76+ # ' @references Lohmoller, J.B. (1989). Latent variables path modeling with partial least squares. Heidelberg, Germany: Physica-Verlag.
77+ # '
4278# ' @export
4379path_weighting <- function (smMatrix , fscores , dependant , paths_matrix ) {
4480 # correlations for outgoing paths
@@ -104,20 +140,56 @@ standardize_outer_weights <- function(normData, mmVariables, outer_weights) {
104140 return (t(t(outer_weights ) / std_devs ))
105141}
106142
143+ # ' Outer weighting scheme functions to estimate construct weighting.
144+ # '
145+ # ' \code{mode_A}, \code{correlation_weights} and \code{mode_B}, \code{regression_weights} specify the outer weighting
146+ # ' scheme to be used in the estimation of the construct weights and score.
147+ # '
148+ # ' @param mmMatrix is the \code{measurement_model} - a source-to-target matrix representing the measurement model,
149+ # ' generated by \code{constructs}.
150+ # '
151+ # ' @param i is the name of the construct to be estimated.
152+ # '
153+ # ' @param normData is the dataframe of the normalized item data.
154+ # '
155+ # ' @param fscores is the matrix of construct scores generated by \code{simplePLS}.
156+ # '
157+ # ' @usage
158+ # ' mode_A(mmMatrix, i, normData, fscores)
159+ # '
160+ # ' @aliases mode_A, correlation_weights
161+ # '
107162# ' @export
108163mode_A <- function (mmMatrix , i , normData , fscores ) {
109164 return (stats :: cov(normData [,mmMatrix [mmMatrix [," latent" ]== i ," measurement" ]],fscores [,i ]))
110165}
111-
112166# ' @export
113167correlation_weights <- mode_A
114168
169+ # ' Outer weighting scheme functions to estimate construct weighting.
170+ # '
171+ # ' \code{mode_A}, \code{correlation_weights} and \code{mode_B}, \code{regression_weights} specify the outer weighting
172+ # ' scheme to be used in the estimation of the construct weights and score.
173+ # '
174+ # ' @param mmMatrix is the \code{measurement_model} - a source-to-target matrix representing the measurement model,
175+ # ' generated by \code{constructs}.
176+ # '
177+ # ' @param i is the name of the construct to be estimated.
178+ # '
179+ # ' @param normData is the dataframe of the normalized item data.
180+ # '
181+ # ' @param fscores is the matrix of construct scores generated by \code{simplePLS}.
182+ # '
183+ # ' @usage
184+ # ' mode_B(mmMatrix, i, normData, fscores)
185+ # '
186+ # ' @aliases mode_B, regression_weights
187+ # '
115188# ' @export
116189mode_B <- function (mmMatrix , i ,normData , fscores ) {
117190 return (solve(stats :: cor(normData [,mmMatrix [mmMatrix [," latent" ]== i ," measurement" ]])) %*%
118191 stats :: cor(normData [,mmMatrix [mmMatrix [," latent" ]== i ," measurement" ]],
119192 fscores [,i ]))
120193}
121-
122194# ' @export
123195regression_weights <- mode_B
0 commit comments