|
| 1 | +import numpy as np |
| 2 | +import matplotlib.pyplot as plt |
| 3 | + |
| 4 | + |
| 5 | +def draw_neural_net(ax, left, right, bottom, top, layer_sizes): |
| 6 | + ''' |
| 7 | + Draw a neural network cartoon using matplotilb. |
| 8 | + |
| 9 | + :usage: |
| 10 | + >>> fig = plt.figure(figsize=(12, 12)) |
| 11 | + >>> draw_neural_net(fig.gca(), .1, .9, .1, .9, [4, 7, 2]) |
| 12 | + |
| 13 | + :parameters: |
| 14 | + - ax : matplotlib.axes.AxesSubplot |
| 15 | + The axes on which to plot the cartoon (get e.g. by plt.gca()) |
| 16 | + - left : float |
| 17 | + The center of the leftmost node(s) will be placed here |
| 18 | + - right : float |
| 19 | + The center of the rightmost node(s) will be placed here |
| 20 | + - bottom : float |
| 21 | + The center of the bottommost node(s) will be placed here |
| 22 | + - top : float |
| 23 | + The center of the topmost node(s) will be placed here |
| 24 | + - layer_sizes : list of int |
| 25 | + List of layer sizes, including input and output dimensionality |
| 26 | + ''' |
| 27 | + n_layers = len(layer_sizes) |
| 28 | + v_spacing = (top - bottom)/float(max(layer_sizes)) |
| 29 | + h_spacing = (right - left)/float(len(layer_sizes) - 1) |
| 30 | + # Nodes |
| 31 | + for n, layer_size in enumerate(layer_sizes): |
| 32 | + layer_top = v_spacing*(layer_size - 1)/2. + (top + bottom)/2. |
| 33 | + for m in range(layer_size): |
| 34 | + circle = plt.Circle((n*h_spacing + left, layer_top - m*v_spacing), v_spacing/4., |
| 35 | + color='w', ec='k', zorder=4) |
| 36 | + ax.add_artist(circle) |
| 37 | + # Edges |
| 38 | + for n, (layer_size_a, layer_size_b) in enumerate(zip(layer_sizes[:-1], layer_sizes[1:])): |
| 39 | + layer_top_a = v_spacing*(layer_size_a - 1)/2. + (top + bottom)/2. |
| 40 | + layer_top_b = v_spacing*(layer_size_b - 1)/2. + (top + bottom)/2. |
| 41 | + for m in range(layer_size_a): |
| 42 | + for o in range(layer_size_b): |
| 43 | + line = plt.Line2D([n*h_spacing + left, (n + 1)*h_spacing + left], |
| 44 | + [layer_top_a - m*v_spacing, layer_top_b - o*v_spacing], c='k') |
| 45 | + ax.add_artist(line) |
| 46 | + |
| 47 | + return ax |
| 48 | + |
0 commit comments