2323import  paddle 
2424import  operator 
2525import  types 
26- import  paddle .fluid  as  fluid 
2726
2827__all__  =  ['amp_guard' , 'amp_decorate' ]
2928
@@ -220,16 +219,16 @@ def amp_guard(enable=True,
220219     .. code-block:: python 
221220
222221        import numpy as np 
223-         import paddle.fluid as fluid  
222+         import paddle 
224223
225224        data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32') 
226-         with fluid.dygraph.guard(): 
227-             conv2d = fluid.dygraph.Conv2D(3, 2, 3) 
228-             data = fluid.dygraph.to_variable(data) 
229-             with fluid.dygraph.amp_guard(): 
225+         with paddle. fluid.dygraph.guard(): 
226+             conv2d = paddle. fluid.dygraph.Conv2D(3, 2, 3) 
227+             data = paddle. fluid.dygraph.to_variable(data) 
228+             with paddle. fluid.dygraph.amp_guard(): 
230229                conv = conv2d(data) 
231230                print(conv.dtype) # FP16 
232-             with fluid.dygraph.amp_guard(enable=False): 
231+             with paddle. fluid.dygraph.amp_guard(enable=False): 
233232                conv = conv2d(data) 
234233                print(conv.dtype) # FP32 
235234
@@ -301,7 +300,7 @@ def __init__(self, save_dtype):
301300    def  __call__ (self , state_dict ):
302301        for  key  in  state_dict :
303302            param  =  state_dict [key ]
304-             with  fluid .dygraph .guard ():
303+             with  paddle . fluid .dygraph .guard ():
305304                param_applied  =  paddle .cast (param , self ._save_dtype )
306305                param_applied .name  =  param .name 
307306                state_dict [key ] =  param_applied 
@@ -335,16 +334,15 @@ def amp_decorate(models,
335334        # required: gpu 
336335        # Demo1: single model and optimizer: 
337336        import paddle 
338-         import paddle.fluid as fluid 
339337
340338        model = paddle.nn.Conv2D(3, 2, 3, bias_attr=False) 
341339        optimzier = paddle.optimizer.SGD(parameters=model.parameters()) 
342340
343-         model, optimizer = fluid.dygraph.amp_decorate(models=model, optimizers=optimzier, level='O2') 
341+         model, optimizer = paddle. fluid.dygraph.amp_decorate(models=model, optimizers=optimzier, level='O2') 
344342
345343        data = paddle.rand([10, 3, 32, 32]) 
346344
347-         with fluid.dygraph.amp_guard(enable=True, custom_white_list=None, custom_black_list=None, level='O2'): 
345+         with paddle. fluid.dygraph.amp_guard(enable=True, custom_white_list=None, custom_black_list=None, level='O2'): 
348346            output = model(data) 
349347            print(output.dtype) # FP16 
350348
@@ -353,11 +351,11 @@ def amp_decorate(models,
353351        model2 = paddle.nn.Conv2D(3, 2, 3, bias_attr=False) 
354352        optimizer2 = paddle.optimizer.Adam(parameters=model2.parameters()) 
355353
356-         models, optimizers = fluid.dygraph.amp_decorate(models=[model, model2], optimizers=[optimzier, optimizer2], level='O2') 
354+         models, optimizers = paddle. fluid.dygraph.amp_decorate(models=[model, model2], optimizers=[optimzier, optimizer2], level='O2') 
357355
358356        data = paddle.rand([10, 3, 32, 32]) 
359357
360-         with fluid.dygraph.amp_guard(enable=True, custom_white_list=None, custom_black_list=None, level='O2'): 
358+         with paddle. fluid.dygraph.amp_guard(enable=True, custom_white_list=None, custom_black_list=None, level='O2'): 
361359            output = models[0](data) 
362360            output2 = models[1](data) 
363361            print(output.dtype) # FP16 
0 commit comments