Skip to content

Commit fd4c362

Browse files
author
Carmine Abate
committed
primed RrHP, RrTP, RrXP, RrSP
1 parent 95b4373 commit fd4c362

File tree

3 files changed

+15
-15
lines changed

3 files changed

+15
-15
lines changed

Alternative2FR.v

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -123,9 +123,9 @@ Proof.
123123
Qed.
124124

125125

126-
Theorem alternative_RrSP : RrSP <-> RrSP_a.
126+
Theorem alternative_RrSP' : RrSP' <-> RrSP_a.
127127
Proof.
128-
rewrite RrSP_a_contra, <- RrSC_RrSP.
128+
rewrite RrSP_a_contra, <- RrSC_RrSP'.
129129
split; intro Hr.
130130
+ intros I ρ δ [Ct Hct].
131131
specialize (Hr Ct (fun P m => psem (Ct [P↓]) m) ).
@@ -314,9 +314,9 @@ Proof.
314314
exists Cs. now rewrite not_ex_forall_not.
315315
Qed.
316316

317-
Theorem alternative_RrHP : RrHP <-> RrHP_a.
317+
Theorem alternative_RrHP' : RrHP' <-> RrHP_a.
318318
Proof.
319-
rewrite <- RrHC_RrHP, RrHP_a_contra.
319+
rewrite <- RrHC_RrHP', RrHP_a_contra.
320320
split; intro Hr.
321321
+ intros I ρ δ [Ct Ht].
322322
destruct (Hr Ct) as [Cs Hs].

Criteria.v

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -450,7 +450,7 @@ Definition RrTC :=
450450
(forall P, sem tgt (Ct [P↓]) (f P)) ->
451451
exists Cs, (forall P, sem src (Cs [P]) (f P)).
452452

453-
Lemma RrTC_RrTP : RrTC <-> RrTP.
453+
Lemma RrTC_RrTP : RrTC <-> RrTP'.
454454
Proof.
455455
split.
456456
- intros HRrTC R. rewrite contra.
@@ -550,9 +550,9 @@ Definition RrSC : Prop :=
550550
(forall P, spref (f P) (sem tgt (Ct [P↓]))) ->
551551
exists Cs, (forall P, spref (f P) (sem src (Cs [P]))).
552552

553-
Theorem RrSC_RrSP : RrSC <-> RrSP.
553+
Theorem RrSC_RrSP' : RrSC <-> RrSP'.
554554
Proof.
555-
unfold RrSP, RrSC. split.
555+
unfold RrSP', RrSC. split.
556556
- intros h R h0 Ct f h1. specialize (h Ct f h1).
557557
destruct h as [Cs h]. now apply (h0 Cs f h).
558558
- intros h Ct f h0. apply NNPP. intros ff.
@@ -665,9 +665,9 @@ Definition RrXC : Prop :=
665665
(forall P, spref_x (f P) (sem tgt (Ct [P↓]))) ->
666666
exists Cs, (forall P, spref_x (f P) (sem src (Cs [P]))).
667667

668-
Theorem RrXC_RrXP : RrXC <-> RrXP.
668+
Theorem RrXC_RrXP' : RrXC <-> RrXP'.
669669
Proof.
670-
unfold RrXP, RrXC. split.
670+
unfold RrXP', RrXC. split.
671671
- intros h R h0 Ct f h1. specialize (h Ct f h1).
672672
destruct h as [Cs h]. now apply (h0 Cs f h).
673673
- intros h Ct f h0. apply NNPP. intros ff.
@@ -725,9 +725,9 @@ Qed.
725725
Definition RrHC : Prop :=
726726
forall Ct, exists Cs, (forall P, sem src (Cs [P]) = sem tgt (Ct [P ↓])).
727727

728-
Theorem RrHC_RrHP : RrHC <-> RrHP.
728+
Theorem RrHC_RrHP' : RrHC <-> RrHP'.
729729
Proof.
730-
unfold RrHP, RrHC. split.
730+
unfold RrHP', RrHC. split.
731731
- intros h R hcs Ct. destruct (h Ct) as [Cs h0]; clear h.
732732
specialize (hcs Cs).
733733
assert (hh : (fun P : par src => sem src (Cs [P])) =

Robustdef.v

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -233,7 +233,7 @@ Qed.
233233
(** *Robust Preservation of arbitrary-Relational Properties *)
234234

235235

236-
Definition RrTP : Prop :=
236+
Definition RrTP' : Prop :=
237237
forall R : (par src -> trace) -> Prop,
238238
(forall Cs f, (forall P, sem src (Cs [P]) (f P)) -> R f) ->
239239
(forall Ct f, (forall P, sem tgt (Ct [P↓]) (f P)) -> R f).
@@ -274,7 +274,7 @@ Qed.
274274

275275
(** *Robust Preservation of arbitrary Relational Safety Properties*)
276276

277-
Definition RrSP : Prop :=
277+
Definition RrSP' : Prop :=
278278
forall R : (par src -> (finpref -> Prop)) -> Prop,
279279
(forall Cs f, (forall P, spref (f P) (sem src (Cs [P]))) -> R f) ->
280280
(forall Ct f, (forall P, spref (f P) (sem tgt (Ct [P↓]))) -> R f).
@@ -311,7 +311,7 @@ Qed.
311311

312312
(** *Robust Preservation of arbitrary Relational XSafety Properties*)
313313

314-
Definition RrXP : Prop :=
314+
Definition RrXP' : Prop :=
315315
forall R : (par src -> (xpref -> Prop)) -> Prop,
316316
(forall Cs f, (forall P, spref_x (f P) (sem src (Cs [P]))) -> R f) ->
317317
(forall Ct f, (forall P, spref_x (f P) (sem tgt (Ct [P↓]))) -> R f).
@@ -325,7 +325,7 @@ Definition R2rHP : Prop :=
325325

326326
(** *Robust Preservation of arbitrary Relational HyperProperties*)
327327

328-
Definition RrHP : Prop :=
328+
Definition RrHP' : Prop :=
329329
forall R : (par src -> prop) -> Prop,
330330
(forall Cs, R (fun P => sem src (Cs [ P] ) )) ->
331331
(forall Ct, R (fun P => sem tgt (Ct [ (P ↓)]) )).

0 commit comments

Comments
 (0)