forked from ray-project/rayfed
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmany_tiny_tasks_benchmark.py
65 lines (52 loc) · 1.73 KB
/
many_tiny_tasks_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# Copyright 2023 The RayFed Team
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import ray
import time
import sys
import fed
@fed.remote
class MyActor:
def run(self):
return None
@fed.remote
class Aggregator:
def aggr(self, val1, val2):
return None
def main(party):
ray.init(address='local')
addresses = {
'alice': '127.0.0.1:11010',
'bob': '127.0.0.1:11011',
}
fed.init(addresses=addresses, party=party)
actor_alice = MyActor.party("alice").remote()
actor_bob = MyActor.party("bob").remote()
aggregator = Aggregator.party("alice").remote()
start = time.time()
num_calls = 10000
for i in range(num_calls):
val_alice = actor_alice.run.remote()
val_bob = actor_bob.run.remote()
sum_val_obj = aggregator.aggr.remote(val_alice, val_bob)
fed.get(sum_val_obj)
if i % 100 == 0:
print(f"Running {i}th call")
print(f"num calls: {num_calls}")
print("total time (ms) = ", (time.time() - start)*1000)
print("per task overhead (ms) =", (time.time() - start)*1000/num_calls)
fed.shutdown()
ray.shutdown()
if __name__ == "__main__":
assert len(sys.argv) == 2, 'Please run this script with party.'
main(sys.argv[1])