-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreport_questions.py
88 lines (68 loc) · 4.53 KB
/
report_questions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
from main import play_learning_agent
def save_generalization_results():
distance_metric = 'no_generalization'
play_learning_agent(num_episodes=100, plot_filename=distance_metric, csv_filename=distance_metric,
display_screen=False, agent_type='combined_verbose', exploration=None, distance_metric=None)
distance_metric = 'manhattan'
play_learning_agent(num_episodes=100, plot_filename=distance_metric, csv_filename=distance_metric,
display_screen=False, agent_type='combined_verbose', exploration=None,
distance_metric=distance_metric)
distance_metric = 'hamming'
play_learning_agent(num_episodes=100, plot_filename=distance_metric, csv_filename=distance_metric,
display_screen=False, agent_type='combined_verbose', exploration=None,
distance_metric=distance_metric)
distance_metric = 'same_result'
play_learning_agent(num_episodes=100, plot_filename=distance_metric, csv_filename=distance_metric,
display_screen=False, agent_type='combined_verbose', exploration=None,
distance_metric=distance_metric)
filename = 'subsumption_generalization'
play_learning_agent(num_episodes=100, plot_filename=filename, csv_filename=filename,
display_screen=False, agent_type='subsumption', exploration=None,
distance_metric=None, save_learning_filename='subsumption_dangerous_no_exploration')
def save_exploration_results():
filename = 'subsumption_random'
play_learning_agent(num_episodes=100, plot_filename=filename, csv_filename=filename,
display_screen=False, agent_type='subsumption', exploration='random',
distance_metric=None, save_learning_filename='subsumption_dangerous_random')
filename = 'subsumption_optimistic'
play_learning_agent(num_episodes=100, plot_filename=filename, csv_filename=filename,
display_screen=False, agent_type='subsumption', exploration='optimistic',
distance_metric=None, save_learning_filename='subsumption_dangerous_optimistic')
filename = 'subsumption_combined'
play_learning_agent(num_episodes=100, plot_filename=filename, csv_filename=filename,
display_screen=False, agent_type='subsumption', exploration='combined',
distance_metric=None, save_learning_filename='subsumption_dangerous_combined')
def save_performance_results():
filename = 'seed123'
play_learning_agent(num_episodes=100, plot_filename=filename, csv_filename=filename,
display_screen=False, agent_type='subsumption', exploration='combined',
distance_metric=None, save_learning_filename='subsumption_dangerous_combined_123',
random_seed=123)
filename = 'seed459'
play_learning_agent(num_episodes=100, plot_filename=filename, csv_filename=filename,
display_screen=False, agent_type='subsumption', exploration='combined',
distance_metric=None, save_learning_filename='subsumption_dangerous_combined_459',
random_seed=459)
filename = 'seed598'
play_learning_agent(num_episodes=100, plot_filename=filename, csv_filename=filename,
display_screen=False, agent_type='subsumption', exploration='combined',
distance_metric=None, save_learning_filename='subsumption_dangerous_combined_598',
random_seed=459)
def continued_learning():
filename = 'seed459_2200'
play_learning_agent(num_episodes=1600, plot_filename=filename, csv_filename=filename,
display_screen=False, agent_type='subsumption', exploration='combined',
distance_metric=None, save_learning_filename='subsumption_dangerous_combined_459_2200',
random_seed=459, load_learning_filename='subsumption_dangerous_combined_459_600')
def sample_play():
play_learning_agent(num_episodes=100,
display_screen=True, agent_type='subsumption', exploration='combined',
distance_metric=None,
random_seed=459, load_learning_filename='subsumption_dangerous_combined_459_400')
if __name__ == '__main__':
# play_learning_agent()
# save_generalization_results()
# save_exploration_results()
# save_performance_results()
continued_learning()
# sample_play()