Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add ruff for linting, remove flake8, remove isort, remove pylint #389

Merged
merged 4 commits into from
Jun 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 3 additions & 5 deletions Makefile
Original file line number Diff line number Diff line change
Expand Up @@ -80,14 +80,12 @@ install-develop: clean-build clean-pyc ## install the package in editable mode a
# LINT TARGETS

.PHONY: lint
lint: ## check style with flake8 and isort
lint:
invoke lint

.PHONY: fix-lint
fix-lint: ## fix lint issues using autoflake, autopep8, and isort
find ctgan tests -name '*.py' | xargs autoflake --in-place --remove-all-unused-imports --remove-unused-variables
autopep8 --in-place --recursive --aggressive ctgan tests
isort --apply --atomic --recursive ctgan tests
fix-lint:
invoke fix-lint


# TEST TARGETS
Expand Down
6 changes: 1 addition & 5 deletions ctgan/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,8 +10,4 @@
from ctgan.synthesizers.ctgan import CTGAN
from ctgan.synthesizers.tvae import TVAE

__all__ = (
'CTGAN',
'TVAE',
'load_demo'
)
__all__ = ('CTGAN', 'TVAE', 'load_demo')
131 changes: 82 additions & 49 deletions ctgan/__main__.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,49 +8,78 @@

def _parse_args():
parser = argparse.ArgumentParser(description='CTGAN Command Line Interface')
parser.add_argument('-e', '--epochs', default=300, type=int,
help='Number of training epochs')
parser.add_argument('-t', '--tsv', action='store_true',
help='Load data in TSV format instead of CSV')
parser.add_argument('--no-header', dest='header', action='store_false',
help='The CSV file has no header. Discrete columns will be indices.')
parser.add_argument('-e', '--epochs', default=300, type=int, help='Number of training epochs')
parser.add_argument(
'-t', '--tsv', action='store_true', help='Load data in TSV format instead of CSV'
)
parser.add_argument(
'--no-header',
dest='header',
action='store_false',
help='The CSV file has no header. Discrete columns will be indices.',
)

parser.add_argument('-m', '--metadata', help='Path to the metadata')
parser.add_argument('-d', '--discrete',
help='Comma separated list of discrete columns without whitespaces.')
parser.add_argument('-n', '--num-samples', type=int,
help='Number of rows to sample. Defaults to the training data size')

parser.add_argument('--generator_lr', type=float, default=2e-4,
help='Learning rate for the generator.')
parser.add_argument('--discriminator_lr', type=float, default=2e-4,
help='Learning rate for the discriminator.')

parser.add_argument('--generator_decay', type=float, default=1e-6,
help='Weight decay for the generator.')
parser.add_argument('--discriminator_decay', type=float, default=0,
help='Weight decay for the discriminator.')

parser.add_argument('--embedding_dim', type=int, default=128,
help='Dimension of input z to the generator.')
parser.add_argument('--generator_dim', type=str, default='256,256',
help='Dimension of each generator layer. '
'Comma separated integers with no whitespaces.')
parser.add_argument('--discriminator_dim', type=str, default='256,256',
help='Dimension of each discriminator layer. '
'Comma separated integers with no whitespaces.')

parser.add_argument('--batch_size', type=int, default=500,
help='Batch size. Must be an even number.')
parser.add_argument('--save', default=None, type=str,
help='A filename to save the trained synthesizer.')
parser.add_argument('--load', default=None, type=str,
help='A filename to load a trained synthesizer.')

parser.add_argument('--sample_condition_column', default=None, type=str,
help='Select a discrete column name.')
parser.add_argument('--sample_condition_column_value', default=None, type=str,
help='Specify the value of the selected discrete column.')
parser.add_argument(
'-d', '--discrete', help='Comma separated list of discrete columns without whitespaces.'
)
parser.add_argument(
'-n',
'--num-samples',
type=int,
help='Number of rows to sample. Defaults to the training data size',
)

parser.add_argument(
'--generator_lr', type=float, default=2e-4, help='Learning rate for the generator.'
)
parser.add_argument(
'--discriminator_lr', type=float, default=2e-4, help='Learning rate for the discriminator.'
)

parser.add_argument(
'--generator_decay', type=float, default=1e-6, help='Weight decay for the generator.'
)
parser.add_argument(
'--discriminator_decay', type=float, default=0, help='Weight decay for the discriminator.'
)

parser.add_argument(
'--embedding_dim', type=int, default=128, help='Dimension of input z to the generator.'
)
parser.add_argument(
'--generator_dim',
type=str,
default='256,256',
help='Dimension of each generator layer. ' 'Comma separated integers with no whitespaces.',
)
parser.add_argument(
'--discriminator_dim',
type=str,
default='256,256',
help='Dimension of each discriminator layer. '
'Comma separated integers with no whitespaces.',
)

parser.add_argument(
'--batch_size', type=int, default=500, help='Batch size. Must be an even number.'
)
parser.add_argument(
'--save', default=None, type=str, help='A filename to save the trained synthesizer.'
)
parser.add_argument(
'--load', default=None, type=str, help='A filename to load a trained synthesizer.'
)

parser.add_argument(
'--sample_condition_column', default=None, type=str, help='Select a discrete column name.'
)
parser.add_argument(
'--sample_condition_column_value',
default=None,
type=str,
help='Specify the value of the selected discrete column.',
)

parser.add_argument('data', help='Path to training data')
parser.add_argument('output', help='Path of the output file')
Expand All @@ -72,11 +101,16 @@ def main():
generator_dim = [int(x) for x in args.generator_dim.split(',')]
discriminator_dim = [int(x) for x in args.discriminator_dim.split(',')]
model = CTGAN(
embedding_dim=args.embedding_dim, generator_dim=generator_dim,
discriminator_dim=discriminator_dim, generator_lr=args.generator_lr,
generator_decay=args.generator_decay, discriminator_lr=args.discriminator_lr,
discriminator_decay=args.discriminator_decay, batch_size=args.batch_size,
epochs=args.epochs)
embedding_dim=args.embedding_dim,
generator_dim=generator_dim,
discriminator_dim=discriminator_dim,
generator_lr=args.generator_lr,
generator_decay=args.generator_decay,
discriminator_lr=args.discriminator_lr,
discriminator_decay=args.discriminator_decay,
batch_size=args.batch_size,
epochs=args.epochs,
)
model.fit(data, discrete_columns)

if args.save is not None:
Expand All @@ -88,9 +122,8 @@ def main():
assert args.sample_condition_column_value is not None

sampled = model.sample(
num_samples,
args.sample_condition_column,
args.sample_condition_column_value)
num_samples, args.sample_condition_column, args.sample_condition_column_value
)

if args.tsv:
write_tsv(sampled, args.metadata, args.output)
Expand Down
12 changes: 3 additions & 9 deletions ctgan/data.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,9 +15,7 @@ def read_csv(csv_filename, meta_filename=None, header=True, discrete=None):
metadata = json.load(meta_file)

discrete_columns = [
column['name']
for column in metadata['columns']
if column['type'] != 'continuous'
column['name'] for column in metadata['columns'] if column['type'] != 'continuous'
]

elif discrete:
Expand All @@ -36,10 +34,7 @@ def read_tsv(data_filename, meta_filename):
with open(meta_filename) as f:
column_info = f.readlines()

column_info_raw = [
x.replace('{', ' ').replace('}', ' ').split()
for x in column_info
]
column_info_raw = [x.replace('{', ' ').replace('}', ' ').split() for x in column_info]

discrete = []
continuous = []
Expand All @@ -57,7 +52,7 @@ def read_tsv(data_filename, meta_filename):
meta = {
'continuous_columns': continuous,
'discrete_columns': discrete,
'column_info': column_info
'column_info': column_info,
}

with open(data_filename) as f:
Expand All @@ -82,7 +77,6 @@ def read_tsv(data_filename, meta_filename):
def write_tsv(data, meta, output_filename):
"""Write to a tsv file."""
with open(output_filename, 'w') as f:

for row in data:
for idx, col in enumerate(row):
if idx in meta['continuous_columns']:
Expand Down
32 changes: 14 additions & 18 deletions ctgan/data_sampler.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,14 +10,13 @@ def __init__(self, data, output_info, log_frequency):
self._data_length = len(data)

def is_discrete_column(column_info):
return (len(column_info) == 1
and column_info[0].activation_fn == 'softmax')
return len(column_info) == 1 and column_info[0].activation_fn == 'softmax'

n_discrete_columns = sum(
[1 for column_info in output_info if is_discrete_column(column_info)])
n_discrete_columns = sum([
1 for column_info in output_info if is_discrete_column(column_info)
])

self._discrete_column_matrix_st = np.zeros(
n_discrete_columns, dtype='int32')
self._discrete_column_matrix_st = np.zeros(n_discrete_columns, dtype='int32')

# Store the row id for each category in each discrete column.
# For example _rid_by_cat_cols[a][b] is a list of all rows with the
Expand All @@ -41,20 +40,17 @@ def is_discrete_column(column_info):
assert st == data.shape[1]

# Prepare an interval matrix for efficiently sample conditional vector
max_category = max([
column_info[0].dim
for column_info in output_info
if is_discrete_column(column_info)
], default=0)
max_category = max(
[column_info[0].dim for column_info in output_info if is_discrete_column(column_info)],
default=0,
)

self._discrete_column_cond_st = np.zeros(n_discrete_columns, dtype='int32')
self._discrete_column_n_category = np.zeros(n_discrete_columns, dtype='int32')
self._discrete_column_category_prob = np.zeros((n_discrete_columns, max_category))
self._n_discrete_columns = n_discrete_columns
self._n_categories = sum([
column_info[0].dim
for column_info in output_info
if is_discrete_column(column_info)
column_info[0].dim for column_info in output_info if is_discrete_column(column_info)
])

st = 0
Expand All @@ -68,7 +64,7 @@ def is_discrete_column(column_info):
if log_frequency:
category_freq = np.log(category_freq + 1)
category_prob = category_freq / np.sum(category_freq)
self._discrete_column_category_prob[current_id, :span_info.dim] = category_prob
self._discrete_column_category_prob[current_id, : span_info.dim] = category_prob
self._discrete_column_cond_st[current_id] = current_cond_st
self._discrete_column_n_category[current_id] = span_info.dim
current_cond_st += span_info.dim
Expand Down Expand Up @@ -98,14 +94,13 @@ def sample_condvec(self, batch):
if self._n_discrete_columns == 0:
return None

discrete_column_id = np.random.choice(
np.arange(self._n_discrete_columns), batch)
discrete_column_id = np.random.choice(np.arange(self._n_discrete_columns), batch)

cond = np.zeros((batch, self._n_categories), dtype='float32')
mask = np.zeros((batch, self._n_discrete_columns), dtype='float32')
mask[np.arange(batch), discrete_column_id] = 1
category_id_in_col = self._random_choice_prob_index(discrete_column_id)
category_id = (self._discrete_column_cond_st[discrete_column_id] + category_id_in_col)
category_id = self._discrete_column_cond_st[discrete_column_id] + category_id_in_col
cond[np.arange(batch), category_id] = 1

return cond, mask, discrete_column_id, category_id_in_col
Expand All @@ -130,6 +125,7 @@ def sample_data(self, data, n, col, opt):
Args:
data:
The training data.

Returns:
n:
n rows of matrix data.
Expand Down
Loading
Loading