|
| 1 | +var bits = require("bit-twiddle") |
| 2 | + |
| 3 | +function fft(dir, nrows, ncols, buffer, x_ptr, y_ptr, scratch_ptr) { |
| 4 | + dir |= 0 |
| 5 | + nrows |= 0 |
| 6 | + ncols |= 0 |
| 7 | + x_ptr |= 0 |
| 8 | + y_ptr |= 0 |
| 9 | + if(bits.isPow2(ncols)) { |
| 10 | + fftRadix2(dir, nrows, ncols, buffer, x_ptr, y_ptr) |
| 11 | + } else { |
| 12 | + fftBluestein(dir, nrows, ncols, buffer, x_ptr, y_ptr, scratch_ptr) |
| 13 | + } |
| 14 | +} |
| 15 | +module.exports = fft |
| 16 | + |
| 17 | +function scratchMemory(n) { |
| 18 | + if(bits.isPow2(n)) { |
| 19 | + return 0 |
| 20 | + } |
| 21 | + return 2 * n + 4 * bits.nextPow2(2*n + 1) |
| 22 | +} |
| 23 | +module.exports.scratchMemory = scratchMemory |
| 24 | + |
| 25 | + |
| 26 | +//Radix 2 FFT Adapted from Paul Bourke's C Implementation |
| 27 | +function fftRadix2(dir, nrows, ncols, buffer, x_ptr, y_ptr) { |
| 28 | + dir |= 0 |
| 29 | + nrows |= 0 |
| 30 | + ncols |= 0 |
| 31 | + x_ptr |= 0 |
| 32 | + y_ptr |= 0 |
| 33 | + var nn,i,i1,j,k,i2,l,l1,l2 |
| 34 | + var c1,c2,tx,ty,t1,t2,u1,u2,z,row |
| 35 | + |
| 36 | + // Calculate the number of points |
| 37 | + nn = ncols |
| 38 | + m = bits.log2(nn) |
| 39 | + |
| 40 | + for(row=0; row<nrows; ++row) { |
| 41 | + // Do the bit reversal |
| 42 | + i2 = nn >> 1; |
| 43 | + j = 0; |
| 44 | + for (i=0;i<nn-1;i++) { |
| 45 | + if (i < j) { |
| 46 | + tx = buffer[x_ptr+i] |
| 47 | + buffer[x_ptr+i] = buffer[x_ptr+j] |
| 48 | + buffer[x_ptr+j] = tx |
| 49 | + ty = buffer[y_ptr+i] |
| 50 | + buffer[y_ptr+i] = buffer[y_ptr+j] |
| 51 | + buffer[y_ptr+j] = ty |
| 52 | + } |
| 53 | + k = i2 |
| 54 | + while (k <= j) { |
| 55 | + j -= k |
| 56 | + k >>= 1 |
| 57 | + } |
| 58 | + j += k |
| 59 | + } |
| 60 | + |
| 61 | + // Compute the FFT |
| 62 | + c1 = -1.0 |
| 63 | + c2 = 0.0 |
| 64 | + l2 = 1 |
| 65 | + for (l=0;l<m;l++) { |
| 66 | + l1 = l2 |
| 67 | + l2 <<= 1 |
| 68 | + u1 = 1.0 |
| 69 | + u2 = 0.0 |
| 70 | + for (j=0;j<l1;j++) { |
| 71 | + for (i=j;i<nn;i+=l2) { |
| 72 | + i1 = i + l1 |
| 73 | + t1 = u1 * buffer[x_ptr+i1] - u2 * buffer[y_ptr+i1] |
| 74 | + t2 = u1 * buffer[y_ptr+i1] + u2 * buffer[x_ptr+i1] |
| 75 | + buffer[x_ptr+i1] = buffer[x_ptr+i] - t1 |
| 76 | + buffer[y_ptr+i1] = buffer[y_ptr+i] - t2 |
| 77 | + buffer[x_ptr+i] += t1 |
| 78 | + buffer[y_ptr+i] += t2 |
| 79 | + } |
| 80 | + z = u1 * c1 - u2 * c2 |
| 81 | + u2 = u1 * c2 + u2 * c1 |
| 82 | + u1 = z |
| 83 | + } |
| 84 | + c2 = Math.sqrt((1.0 - c1) / 2.0); |
| 85 | + if (dir === 1) |
| 86 | + c2 = -c2; |
| 87 | + c1 = Math.sqrt((1.0 + c1) / 2.0); |
| 88 | + } |
| 89 | + |
| 90 | + // Scaling for forward transform |
| 91 | + if (dir === -1) { |
| 92 | + var scale_f = 1.0 / nn |
| 93 | + for (i=0;i<nn;i++) { |
| 94 | + buffer[x_ptr+i] *= scale_f |
| 95 | + buffer[y_ptr+i] *= scale_f |
| 96 | + } |
| 97 | + } |
| 98 | + |
| 99 | + // Advance pointers |
| 100 | + x_ptr += ncols |
| 101 | + y_ptr += ncols |
| 102 | + } |
| 103 | +} |
| 104 | + |
| 105 | +// Use Bluestein algorithm for npot FFTs |
| 106 | +// Scratch memory required: 2 * ncols + 4 * bits.nextPow2(2*ncols + 1) |
| 107 | +function fftBluestein(dir, nrows, ncols, buffer, x_ptr, y_ptr, scratch_ptr) { |
| 108 | + dir |= 0 |
| 109 | + nrows |= 0 |
| 110 | + ncols |= 0 |
| 111 | + x_ptr |= 0 |
| 112 | + y_ptr |= 0 |
| 113 | + scratch_ptr |= 0 |
| 114 | + |
| 115 | + // Initialize tables |
| 116 | + var m = bits.nextPow2(2 * ncols + 1) |
| 117 | + , cos_ptr = scratch_ptr |
| 118 | + , sin_ptr = cos_ptr + ncols |
| 119 | + , xs_ptr = sin_ptr + ncols |
| 120 | + , ys_ptr = xs_ptr + m |
| 121 | + , cft_ptr = ys_ptr + m |
| 122 | + , sft_ptr = cft_ptr + m |
| 123 | + , w = Math.PI / ncols |
| 124 | + , row, a, b, c, d, k1, k2, k3 |
| 125 | + , i |
| 126 | + for(i=0; i<ncols; ++i) { |
| 127 | + a = w * ((i * i) % (ncols * 2)) |
| 128 | + c = Math.cos(a) |
| 129 | + d = Math.sin(a) |
| 130 | + buffer[cft_ptr+(m-i)] = buffer[cft_ptr+i] = buffer[cos_ptr+i] = c |
| 131 | + buffer[sft_ptr+(m-i)] = buffer[sft_ptr+i] = buffer[sin_ptr+i] = d |
| 132 | + } |
| 133 | + for(i=ncols; i<=m-ncols; ++i) { |
| 134 | + buffer[cft_ptr+i] = 0.0 |
| 135 | + } |
| 136 | + for(i=ncols; i<=m-ncols; ++i) { |
| 137 | + buffer[sft_ptr+i] = 0.0 |
| 138 | + } |
| 139 | + |
| 140 | + fftRadix2(1, 1, m, buffer, cft_ptr, sft_ptr) |
| 141 | + |
| 142 | + //Compute scale factor |
| 143 | + if(dir === -1) { |
| 144 | + w = 1.0 / ncols |
| 145 | + } else { |
| 146 | + w = 1.0 |
| 147 | + } |
| 148 | + |
| 149 | + //Handle direction |
| 150 | + for(row=0; row<nrows; ++row) { |
| 151 | + |
| 152 | + // Copy row into scratch memory, multiply weights |
| 153 | + for(i=0; i<ncols; ++i) { |
| 154 | + a = buffer[x_ptr+i] |
| 155 | + b = buffer[y_ptr+i] |
| 156 | + c = buffer[cos_ptr+i] |
| 157 | + d = -buffer[sin_ptr+i] |
| 158 | + k1 = c * (a + b) |
| 159 | + k2 = a * (d - c) |
| 160 | + k3 = b * (c + d) |
| 161 | + buffer[xs_ptr+i] = k1 - k3 |
| 162 | + buffer[ys_ptr+i] = k1 + k2 |
| 163 | + } |
| 164 | + //Zero out the rest |
| 165 | + for(i=ncols; i<m; ++i) { |
| 166 | + buffer[xs_ptr+i] = 0.0 |
| 167 | + } |
| 168 | + for(i=ncols; i<m; ++i) { |
| 169 | + buffer[ys_ptr+i] = 0.0 |
| 170 | + } |
| 171 | + |
| 172 | + // FFT buffer |
| 173 | + fftRadix2(1, 1, m, buffer, xs_ptr, ys_ptr) |
| 174 | + |
| 175 | + // Apply multiplier |
| 176 | + for(i=0; i<m; ++i) { |
| 177 | + a = buffer[xs_ptr+i] |
| 178 | + b = buffer[ys_ptr+i] |
| 179 | + c = buffer[cft_ptr+i] |
| 180 | + d = buffer[sft_ptr+i] |
| 181 | + k1 = c * (a + b) |
| 182 | + k2 = a * (d - c) |
| 183 | + k3 = b * (c + d) |
| 184 | + buffer[xs_ptr+i] = k1 - k3 |
| 185 | + buffer[ys_ptr+i] = k1 + k2 |
| 186 | + } |
| 187 | + |
| 188 | + // Inverse FFT buffer |
| 189 | + fftRadix2(-1, 1, m, buffer, xs_ptr, ys_ptr) |
| 190 | + |
| 191 | + // Copy result back into x/y |
| 192 | + for(i=0; i<ncols; ++i) { |
| 193 | + a = buffer[xs_ptr+i] |
| 194 | + b = -buffer[ys_ptr+i] |
| 195 | + c = buffer[cos_ptr+i] |
| 196 | + d = buffer[sin_ptr+i] |
| 197 | + k1 = c * (a + b) |
| 198 | + k2 = a * (d - c) |
| 199 | + k3 = b * (c + d) |
| 200 | + buffer[x_ptr+i] = w * (k1 - k3) |
| 201 | + buffer[y_ptr+i] = w * (k1 + k2) |
| 202 | + } |
| 203 | + |
| 204 | + x_ptr += ncols |
| 205 | + y_ptr += ncols |
| 206 | + } |
| 207 | +} |
0 commit comments