|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "from utils.utils import Utils\n", |
| 10 | + "from preprocessing.AudioPreprocessor import AudioPreprocessor\n", |
| 11 | + "from feature_extraction.LPCExtractor import LPCExtractor\n", |
| 12 | + "import numpy as np\n", |
| 13 | + "import tensorflow as tf\n", |
| 14 | + "from tensorflow import keras" |
| 15 | + ] |
| 16 | + }, |
| 17 | + { |
| 18 | + "cell_type": "code", |
| 19 | + "execution_count": 52, |
| 20 | + "metadata": {}, |
| 21 | + "outputs": [], |
| 22 | + "source": [ |
| 23 | + "def unison_shuffled_copies(a, b):\n", |
| 24 | + " assert len(a) == len(b)\n", |
| 25 | + " p = np.random.permutation(len(a))\n", |
| 26 | + " return a[p], b[p]\n", |
| 27 | + " \n", |
| 28 | + "def get_data_set(count, speakers):\n", |
| 29 | + " third = int(count/speakers)\n", |
| 30 | + " X = np.zeros((count, 12*20))\n", |
| 31 | + " y = np.zeros(count, dtype='uint8')\n", |
| 32 | + " \n", |
| 33 | + " coefficients_per_speaker = third * 20\n", |
| 34 | + " \n", |
| 35 | + " all_speakers = []\n", |
| 36 | + " for i in range(0, speakers):\n", |
| 37 | + " all_speakers.append([])\n", |
| 38 | + " index = 0\n", |
| 39 | + " while (len(all_speakers[i]) < coefficients_per_speaker):\n", |
| 40 | + " print(index, end=\"\\r\")\n", |
| 41 | + " y_, sr = Utils.load_file(f\"C:\\\\Users\\\\SCU8BH\\\\Documents\\\\T3000\\\\Studienarbeit\\\\Data\\\\50_speakers_audio_data\\\\Speaker{i+30:04}\\\\Speaker{i+30:02}_{index:03}.wav\")\n", |
| 42 | + " \n", |
| 43 | + " y_ = AudioPreprocessor.remove_noise(y=y_, sr=sr)\n", |
| 44 | + " y_ = AudioPreprocessor.remove_silence(y=y_)\n", |
| 45 | + " frames = AudioPreprocessor.create_frames(y=y_, frame_size=500, overlap=100)\n", |
| 46 | + " frames = AudioPreprocessor.window_frames(frames=frames)\n", |
| 47 | + " \n", |
| 48 | + " lpcc = LPCExtractor.lpc(frames=frames, order=12)\n", |
| 49 | + " # lpcc = LPCExtractor.lpcc(lpc_list=lpc, order=12)\n", |
| 50 | + " \n", |
| 51 | + " all_speakers[i] += lpcc\n", |
| 52 | + " \n", |
| 53 | + " index += 1\n", |
| 54 | + " print()\n", |
| 55 | + " \n", |
| 56 | + " for i in range(0, speakers):\n", |
| 57 | + " for j in range(0, third):\n", |
| 58 | + " X[i*third + j] = np.concatenate((all_speakers[i][20*j][1:13], \n", |
| 59 | + " all_speakers[i][20*j+1][1:13], \n", |
| 60 | + " all_speakers[i][20*j+2][1:13],\n", |
| 61 | + " all_speakers[i][20*j+3][1:13],\n", |
| 62 | + " all_speakers[i][20*j+4][1:13],\n", |
| 63 | + " all_speakers[i][20*j+5][1:13],\n", |
| 64 | + " all_speakers[i][20*j+6][1:13],\n", |
| 65 | + " all_speakers[i][20*j+7][1:13],\n", |
| 66 | + " all_speakers[i][20*j+8][1:13],\n", |
| 67 | + " all_speakers[i][20*j+9][1:13],\n", |
| 68 | + " all_speakers[i][20*j+10][1:13], \n", |
| 69 | + " all_speakers[i][20*j+11][1:13], \n", |
| 70 | + " all_speakers[i][20*j+12][1:13],\n", |
| 71 | + " all_speakers[i][20*j+13][1:13],\n", |
| 72 | + " all_speakers[i][20*j+14][1:13],\n", |
| 73 | + " all_speakers[i][20*j+15][1:13],\n", |
| 74 | + " all_speakers[i][20*j+16][1:13],\n", |
| 75 | + " all_speakers[i][20*j+17][1:13],\n", |
| 76 | + " all_speakers[i][20*j+18][1:13],\n", |
| 77 | + " all_speakers[i][20*j+19][1:13]\n", |
| 78 | + " ))\n", |
| 79 | + " y[i*third + j] = i\n", |
| 80 | + " \n", |
| 81 | + " return X, y" |
| 82 | + ] |
| 83 | + }, |
| 84 | + { |
| 85 | + "cell_type": "code", |
| 86 | + "execution_count": 53, |
| 87 | + "metadata": {}, |
| 88 | + "outputs": [ |
| 89 | + { |
| 90 | + "name": "stdout", |
| 91 | + "output_type": "stream", |
| 92 | + "text": [ |
| 93 | + "8\n", |
| 94 | + "11\n", |
| 95 | + "9\n", |
| 96 | + "10\n", |
| 97 | + "10\n" |
| 98 | + ] |
| 99 | + } |
| 100 | + ], |
| 101 | + "source": [ |
| 102 | + "count = 5500\n", |
| 103 | + "speakers = 5\n", |
| 104 | + "X, y = get_data_set(count=count, speakers=speakers)" |
| 105 | + ] |
| 106 | + }, |
| 107 | + { |
| 108 | + "cell_type": "code", |
| 109 | + "execution_count": 63, |
| 110 | + "metadata": {}, |
| 111 | + "outputs": [ |
| 112 | + { |
| 113 | + "name": "stdout", |
| 114 | + "output_type": "stream", |
| 115 | + "text": [ |
| 116 | + "[0 0 0 ... 4 4 4]\n", |
| 117 | + "[4 2 3 ... 2 2 4]\n", |
| 118 | + "29/29 [==============================] - 0s 1ms/step - loss: 2.1533e-05 - accuracy: 1.0000\n", |
| 119 | + "Test accuracy: 1.0\n", |
| 120 | + "Test loss: 2.1533451217692345e-05\n", |
| 121 | + "4/4 [==============================] - 0s 1ms/step\n", |
| 122 | + "[4 2 2 2 2 2 2 2 2 2 2 2 1 4 2 2 1 1 1 1 2 2 4 2 1 2 2 2 2 2 2 4 2 2 2 2 2\n", |
| 123 | + " 2 2 2 2 2 2 2 2 2 2 2 0 2 2 2 2 4 1 2 2 2 2 2 1 2 3 1 1 2 2 2 4 2 4 2 2 2\n", |
| 124 | + " 2 2 2 2 4 1 0 2 4 2 4 2 4 2 1 2 4 2 3 3 2 2 2 2 2 2 2 4 3 4 1 0 2 1 2 2 4\n", |
| 125 | + " 2 2 4 2 2 0 0 0]\n", |
| 126 | + "6\n", |
| 127 | + "14\n", |
| 128 | + "79\n", |
| 129 | + "4\n", |
| 130 | + "16\n" |
| 131 | + ] |
| 132 | + } |
| 133 | + ], |
| 134 | + "source": [ |
| 135 | + "def main(X, y, speakers):\n", |
| 136 | + " print(y)\n", |
| 137 | + " X, y = unison_shuffled_copies(X, y)\n", |
| 138 | + " print(y)\n", |
| 139 | + " # model takes 10 frames a 12 coefficients\n", |
| 140 | + " model = keras.Sequential([\n", |
| 141 | + " keras.layers.Flatten(input_shape=[12*20]),\n", |
| 142 | + " keras.layers.Dense(16, activation=tf.nn.relu),\n", |
| 143 | + " keras.layers.Dense(16, activation=tf.nn.relu),\n", |
| 144 | + " keras.layers.Dense(speakers, activation=tf.nn.softmax)\n", |
| 145 | + " ])\n", |
| 146 | + " \n", |
| 147 | + " model.compile(optimizer=tf.optimizers.Adam(), loss='sparse_categorical_crossentropy', metrics=['accuracy'])\n", |
| 148 | + " \n", |
| 149 | + " model.fit(X[int(5*count/6):], y[int(5*count/6):], epochs=1000, verbose=0)\n", |
| 150 | + " \n", |
| 151 | + " test_loss, test_acc = model.evaluate(X[-int(count/6):], y[-int(count/6):])\n", |
| 152 | + " \n", |
| 153 | + " print(f\"Test accuracy: {test_acc}\")\n", |
| 154 | + " print(f\"Test loss: {test_loss}\")\n", |
| 155 | + " \n", |
| 156 | + " \n", |
| 157 | + " y_, sr = Utils.load_file(f\"C:\\\\Users\\\\SCU8BH\\\\Documents\\\\T3000\\\\Studienarbeit\\\\Data\\\\50_speakers_audio_data\\\\Speaker0032\\\\Speaker32_012.wav\")\n", |
| 158 | + " \n", |
| 159 | + " y_ = AudioPreprocessor.remove_noise(y=y_, sr=sr)\n", |
| 160 | + " y_ = AudioPreprocessor.remove_silence(y=y_)\n", |
| 161 | + " frames = AudioPreprocessor.create_frames(y=y_, frame_size=500, overlap=100)\n", |
| 162 | + " frames = AudioPreprocessor.window_frames(frames=frames)\n", |
| 163 | + " \n", |
| 164 | + " lpcc = LPCExtractor.lpc(frames=frames, order=12)\n", |
| 165 | + " # lpcc = LPCExtractor.lpcc(lpc_list=lpc, order=12)\n", |
| 166 | + " \n", |
| 167 | + " X = np.zeros((int(len(lpcc)/20), 12*20))\n", |
| 168 | + " \n", |
| 169 | + " for j in range(0, int(len(lpcc)/20)):\n", |
| 170 | + " X[j] = np.concatenate((lpcc[20*j][1:13], \n", |
| 171 | + " lpcc[20*j+1][1:13], \n", |
| 172 | + " lpcc[20*j+2][1:13],\n", |
| 173 | + " lpcc[20*j+3][1:13],\n", |
| 174 | + " lpcc[20*j+4][1:13],\n", |
| 175 | + " lpcc[20*j+5][1:13],\n", |
| 176 | + " lpcc[20*j+6][1:13],\n", |
| 177 | + " lpcc[20*j+7][1:13],\n", |
| 178 | + " lpcc[20*j+8][1:13],\n", |
| 179 | + " lpcc[20*j+9][1:13],\n", |
| 180 | + " lpcc[20*j+10][1:13], \n", |
| 181 | + " lpcc[20*j+11][1:13], \n", |
| 182 | + " lpcc[20*j+12][1:13],\n", |
| 183 | + " lpcc[20*j+13][1:13],\n", |
| 184 | + " lpcc[20*j+14][1:13],\n", |
| 185 | + " lpcc[20*j+15][1:13],\n", |
| 186 | + " lpcc[20*j+16][1:13],\n", |
| 187 | + " lpcc[20*j+17][1:13],\n", |
| 188 | + " lpcc[20*j+18][1:13],\n", |
| 189 | + " lpcc[20*j+19][1:13]\n", |
| 190 | + " ))\n", |
| 191 | + " if X.shape[0] > 100:\n", |
| 192 | + " X_2 = X[-100:]\n", |
| 193 | + " pred = model.predict(X)\n", |
| 194 | + " print(np.argmax(pred, axis=1))\n", |
| 195 | + " print(np.count_nonzero(np.argmax(pred, axis=1) == 0))\n", |
| 196 | + " print(np.count_nonzero(np.argmax(pred, axis=1) == 1))\n", |
| 197 | + " print(np.count_nonzero(np.argmax(pred, axis=1) == 2))\n", |
| 198 | + " print(np.count_nonzero(np.argmax(pred, axis=1) == 3))\n", |
| 199 | + " print(np.count_nonzero(np.argmax(pred, axis=1) == 4))\n", |
| 200 | + " # print(y[-100:])\n", |
| 201 | + " \n", |
| 202 | + " \n", |
| 203 | + "if __name__ == \"__main__\":\n", |
| 204 | + " main(X, y, speakers)" |
| 205 | + ] |
| 206 | + } |
| 207 | + ], |
| 208 | + "metadata": { |
| 209 | + "kernelspec": { |
| 210 | + "display_name": "Python 3.10.4 64-bit", |
| 211 | + "language": "python", |
| 212 | + "name": "python3" |
| 213 | + }, |
| 214 | + "language_info": { |
| 215 | + "codemirror_mode": { |
| 216 | + "name": "ipython", |
| 217 | + "version": 3 |
| 218 | + }, |
| 219 | + "file_extension": ".py", |
| 220 | + "mimetype": "text/x-python", |
| 221 | + "name": "python", |
| 222 | + "nbconvert_exporter": "python", |
| 223 | + "pygments_lexer": "ipython3", |
| 224 | + "version": "3.10.4" |
| 225 | + }, |
| 226 | + "orig_nbformat": 4, |
| 227 | + "vscode": { |
| 228 | + "interpreter": { |
| 229 | + "hash": "2fc4d7ba6602d69fe52dcf13f0361bb9556610661c910f56182baab83bdef03f" |
| 230 | + } |
| 231 | + } |
| 232 | + }, |
| 233 | + "nbformat": 4, |
| 234 | + "nbformat_minor": 2 |
| 235 | +} |
0 commit comments