-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.xml
426 lines (275 loc) · 13.1 KB
/
index.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
<?xml version="1.0" encoding="utf-8" standalone="yes" ?>
<rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom">
<channel>
<title>Stefanos Charalambous</title>
<link>https://scharalambous3.github.io/</link>
<atom:link href="https://scharalambous3.github.io/index.xml" rel="self" type="application/rss+xml" />
<description>Stefanos Charalambous</description>
<generator>Wowchemy (https://wowchemy.com)</generator><language>en-us</language>
<image>
<url>https://scharalambous3.github.io/media/icon_hub7a1c745800879165a56661b27a6324f_21626_512x512_fill_lanczos_center_3.png</url>
<title>Stefanos Charalambous</title>
<link>https://scharalambous3.github.io/</link>
</image>
<item>
<title>Reinforcement Learning-Guided MPC for Whole-Body Loco-Manipulation</title>
<link>https://scharalambous3.github.io/project/hrlmpc/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>https://scharalambous3.github.io/project/hrlmpc/</guid>
<description><h2 id="framework">Framework</h2>
<p>We introduce the first framework that combines RL and whole-body MPC, where the MPC is embedded in training. The high-level planner is trained using RL to provide task-space references to a low-level MPC. We are thus able to leverage the benefits of both learning- and optimization-based methods including safety guarantees, great generalization, minimum sim2real gap and data-efficient training.</p>
<p>
<figure >
<div class="d-flex justify-content-center">
<div class="w-100" ><img alt="Framework"
src="https://scharalambous3.github.io/project/hrlmpc/static/image/ThreeStageFramework.gif"
loading="lazy" data-zoomable /></div>
</div></figure>
<em>During a pre-training stage, we use a simplified kinematic model for fast simulation. When training with MPC, we use the MPC solution as our simulator to avoid the additional cost of physics simulation. During deployment, the RL is deployed in closed-loop with the MPC.</em></p>
<div class="row">
<img src="static/image/MPCGetsStuckFaster.gif" alt="Github stars" width="350"/>
<img src="static/image/RLHelpsMPCGetUnstuck2.gif" alt="Language" width="350"/>
</div>
<p><em>Deploying MPC with the planner trained using RL (Right) alleviates the issue of getting stuck in a local minimum when deploying MPC alone (Left) due to its shortsightedness.</em></p>
<h2 id="results">Results</h2>
<p>We are currently working to apply our framework in whole-body navigation to target end-effector positions in cluttered scenes in the real-world.</p>
<p>
<figure >
<div class="d-flex justify-content-center">
<div class="w-100" ><img alt="BoxBoxWallScene"
src="https://scharalambous3.github.io/project/hrlmpc/static/image/SceneOptimized.gif"
loading="lazy" data-zoomable /></div>
</div></figure>
</p>
</description>
</item>
<item>
<title></title>
<link>https://scharalambous3.github.io/admin/config.yml</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>https://scharalambous3.github.io/admin/config.yml</guid>
<description></description>
</item>
<item>
<title>Contact-Implicit Planning for Athletic, Contact-Rich Tasks</title>
<link>https://scharalambous3.github.io/project/cito/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>https://scharalambous3.github.io/project/cito/</guid>
<description><h2 id="framework">Framework</h2>
<p>We present a continuation method for contact-implicit trajectory optimization that works with minimal guidance i.e. without a handcrafted initialization nor references. We are able to automatically discover motions and contact schedules given only a terminal goal specified by the user. The generated motion plans are then tracked by a whole-body MPC.</p>
<p>
<figure >
<div class="d-flex justify-content-center">
<div class="w-100" ><img alt="Framework" srcset="
/project/cito/static/image/Framework_hu105e8e2be2e30de96f5da3257add3649_93742_51b5f66460dbc6c87a15357ba17599f1.webp 400w,
/project/cito/static/image/Framework_hu105e8e2be2e30de96f5da3257add3649_93742_d9dcc7b5b2993d9a2a7d06e0a6a4a05b.webp 760w,
/project/cito/static/image/Framework_hu105e8e2be2e30de96f5da3257add3649_93742_1200x1200_fit_q75_h2_lanczos_3.webp 1200w"
src="https://scharalambous3.github.io/project/cito/static/image/Framework_hu105e8e2be2e30de96f5da3257add3649_93742_51b5f66460dbc6c87a15357ba17599f1.webp"
width="760"
height="356"
loading="lazy" data-zoomable /></div>
</div></figure>
</p>
<p>Given only a commanded position (red sphere) and orientation (green arrow) the whole-body motion plan is optimized including gait, foothold positions and base pose references.</p>
<div class="row">
<img src="static/image/obstacle_xfurther.gif" alt="Github stars" width="400"/>
<img src="static/image/obstacle_xfurther2.gif" alt="Language" width="250"/>
</div>
<h2 id="results-on-hardware">Results on hardware</h2>
<p>Our novel contact-implicit trajectory optimization formulation in the motion refinement stage gives us a direct handle on the contact modes and is a crucial tool in overcoming the sim2real gap. In addition, through the use of a continuation method the generated motion plan has strict physical feasibility.To prove both of these claims, we tested the motion plans generated by our framework on hardware for a complex, under-actuated legged system.</p>
<p>
<figure >
<div class="d-flex justify-content-center">
<div class="w-100" ><img alt="HWTest_Highlight"
src="https://scharalambous3.github.io/project/cito/static/image/HWTest_Highlight.gif"
loading="lazy" data-zoomable /></div>
</div></figure>
<video controls >
<source src="https://scharalambous3.github.io/project/cito/static/image/4.mp4" type="video/mp4">
</video>
</p>
<h3 id="report">Report</h3>
<script type="text/javascript" src= '/js/pdf-js/build/pdf.js'></script>
<style>
#embed-pdf-container {
position: relative;
width: 100%;
height: auto;
min-height: 20vh;
}
.pdf-canvas {
border: 1px solid black;
direction: ltr;
width: 100%;
height: auto;
display: none;
}
#the-canvas {
border: 1px solid black;
direction: ltr;
width: 100%;
height: auto;
display: none;
}
.pdf-loadingWrapper {
display: none;
justify-content: center;
align-items: center;
width: 100%;
height: 350px;
}
.pdf-loading {
display: inline-block;
width: 50px;
height: 50px;
border: 3px solid #d2d0d0;;
border-radius: 50%;
border-top-color: #383838;
animation: spin 1s ease-in-out infinite;
-webkit-animation: spin 1s ease-in-out infinite;
}
#overlayText {
word-wrap: break-word;
display: grid;
justify-content: end;
}
#overlayText a {
position: relative;
top: 10px;
right: 4px;
color: #000;
margin: auto;
background-color: #eeeeee;
padding: 0.3em 1em;
border: solid 2px;
border-radius: 12px;
border-color: #00000030;
text-decoration: none;
}
#overlayText svg {
height: clamp(1em, 2vw, 1.4em);
width: clamp(1em, 2vw, 1.4em);
}
@keyframes spin {
to { -webkit-transform: rotate(360deg); }
}
@-webkit-keyframes spin {
to { -webkit-transform: rotate(360deg); }
}
</style><div class="embed-pdf-container" id="embed-pdf-container-3a71ce23">
<div class="pdf-loadingWrapper" id="pdf-loadingWrapper-3a71ce23">
<div class="pdf-loading" id="pdf-loading-3a71ce23"></div>
</div>
<div id="overlayText">
<a href="static/image/CITO_Paper.pdf" aria-label="Download" download>
<svg aria-hidden="true" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 18 18">
<path d="M9 13c.3 0 .5-.1.7-.3L15.4 7 14 5.6l-4 4V1H8v8.6l-4-4L2.6 7l5.7 5.7c.2.2.4.3.7.3zm-7 2h14v2H2z" />
</svg>
</a>
</div>
<canvas class="pdf-canvas" id="pdf-canvas-3a71ce23"></canvas>
</div>
<div class="pdf-paginator" id="pdf-paginator-3a71ce23">
<button id="pdf-prev-3a71ce23">Previous</button>
<button id="pdf-next-3a71ce23">Next</button> &nbsp; &nbsp;
<span>
<span class="pdf-pagenum" id="pdf-pagenum-3a71ce23"></span> / <span class="pdf-pagecount" id="pdf-pagecount-3a71ce23"></span>
</span>
<a class="pdf-source" id="pdf-source-3a71ce23" href="static/image/CITO_Paper.pdf">[pdf]</a>
</div>
<noscript>
View the PDF file <a class="pdf-source" id="pdf-source-noscript-3a71ce23" href="static/image/CITO_Paper.pdf">here</a>.
</noscript>
<script type="text/javascript">
(function(){
var url = 'static\/image\/CITO_Paper.pdf';
var hidePaginator = "" === "true";
var hideLoader = "" === "true";
var selectedPageNum = parseInt("") || 1;
var pdfjsLib = window['pdfjs-dist/build/pdf'];
if (pdfjsLib.GlobalWorkerOptions.workerSrc == '')
pdfjsLib.GlobalWorkerOptions.workerSrc = "https:\/\/scharalambous3.github.io\/" + 'js/pdf-js/build/pdf.worker.js';
var pdfDoc = null,
pageNum = selectedPageNum,
pageRendering = false,
pageNumPending = null,
scale = 3,
canvas = document.getElementById('pdf-canvas-3a71ce23'),
ctx = canvas.getContext('2d'),
paginator = document.getElementById("pdf-paginator-3a71ce23"),
loadingWrapper = document.getElementById('pdf-loadingWrapper-3a71ce23');
showPaginator();
showLoader();
function renderPage(num) {
pageRendering = true;
pdfDoc.getPage(num).then(function(page) {
var viewport = page.getViewport({scale: scale});
canvas.height = viewport.height;
canvas.width = viewport.width;
var renderContext = {
canvasContext: ctx,
viewport: viewport
};
var renderTask = page.render(renderContext);
renderTask.promise.then(function() {
pageRendering = false;
showContent();
if (pageNumPending !== null) {
renderPage(pageNumPending);
pageNumPending = null;
}
});
});
document.getElementById('pdf-pagenum-3a71ce23').textContent = num;
}
function showContent() {
loadingWrapper.style.display = 'none';
canvas.style.display = 'block';
}
function showLoader() {
if(hideLoader) return
loadingWrapper.style.display = 'flex';
canvas.style.display = 'none';
}
function showPaginator() {
if(hidePaginator) return
paginator.style.display = 'block';
}
function queueRenderPage(num) {
if (pageRendering) {
pageNumPending = num;
} else {
renderPage(num);
}
}
function onPrevPage() {
if (pageNum <= 1) {
return;
}
pageNum--;
queueRenderPage(pageNum);
}
document.getElementById('pdf-prev-3a71ce23').addEventListener('click', onPrevPage);
function onNextPage() {
if (pageNum >= pdfDoc.numPages) {
return;
}
pageNum++;
queueRenderPage(pageNum);
}
document.getElementById('pdf-next-3a71ce23').addEventListener('click', onNextPage);
pdfjsLib.getDocument(url).promise.then(function(pdfDoc_) {
pdfDoc = pdfDoc_;
var numPages = pdfDoc.numPages;
document.getElementById('pdf-pagecount-3a71ce23').textContent = numPages;
if(pageNum > numPages) {
pageNum = numPages
}
renderPage(pageNum);
});
})();
</script>
</description>
</item>
</channel>
</rss>