Skip to content

Commit 572d198

Browse files
authored
Update index.md
1 parent 7adda1a commit 572d198

File tree

1 file changed

+69
-16
lines changed

1 file changed

+69
-16
lines changed

plugins/BrainBeats/index.md

Lines changed: 69 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -13,33 +13,39 @@ To view the plugin source code, please visit the plugin's [GitHub repository](ht
1313
<!-- </p> -->
1414

1515
<p align="center" width="100%">
16-
<img width="30%" src="https://github.com/amisepa/BrainBeats/blob/main/brainbeats_logo2.png">
16+
<img width="30%" alt="BrainBeats logo"
17+
src="https://raw.githubusercontent.com/amisepa/BrainBeats/main/brainbeats_logo2.png">
1718
</p>
1819

20+
1921
The BrainBeats toolbox, implemented as an EEGLAB plugin, allows joint processing and analysis of EEG and cardiovascular signals (ECG and PPG) for brain-heart interplay research. Both the general user interface (GUI) and command line are supported (see tutorial). BrainBeats currently supports: 1) Heartbeat-evoked potentials (HEP) and oscillations (HEO); 2) Extraction of EEG and HRV features; 3) Extraction of heart artifacts from EEG signals; 4) brain-heart coherence.
2022

2123

22-
## THREE METHODS AVAILABLE
24+
## 4 METHODS AVAILABLE
2325

2426
<p align="center" width="100%">
25-
<img width="50%" src="https://github.com/amisepa/BrainBeats/blob/main/figures/diagram.png">
27+
<img width="50%" alt="BrainBeats diagram"
28+
src="https://raw.githubusercontent.com/amisepa/BrainBeats/main/figures/diagram.png">
2629
</p>
2730

28-
1) Process EEG data for heartbeat-evoked potentials (HEP) analysis using ECG or PPG signals. Steps include signal processing of EEG and cardiovascular signals, inserting R-peak markers into the EEG data, segmentation around the R-peaks with optimal window length, time-frequency decomposition.
31+
32+
1) Process EEG data for heartbeat-evoked potentials (HEP) analysis using ECG or PPG signals. Steps include signal processing of EEG and cardiovascular signals, inserting R-peak markers into the EEG data, segmentation around the R-peaks with optimal window length, and time-frequency decomposition.
2933

3034

3135
<p align="center">
32-
Example of HEP at the subject level, obtained from simultaneous EEG-ECG signals
36+
Example of HEP at the subject level, obtained from simultaneous EEG-ECG signals (the cardiac field artifact was preserved here for illustration).
3337
</p>
3438
<p align="center" width="100%">
35-
<img width="50%" src="https://github.com/amisepa/BrainBeats/blob/main/figures/fig11.png">
39+
<img width="50%" alt="BrainBeats fig11"
40+
src="https://raw.githubusercontent.com/amisepa/BrainBeats/main/figures/fig11.png">
3641
</p>
3742

3843
<p align="center">
39-
Example of HEP at the subject level, obtained from simultaneous EEG-PPG signals
44+
Example of HEP at the subject level, obtained from simultaneous EEG-PPG signals (note that with PPG, we must correct for the delay between the electrical and mechanical cardiac events so that the estimated heartbeat times correspond to the R-peaks of an ECG; ~200-400 ms).
4045
</p>
4146
<p align="center" width="100%">
42-
<img width="50%" src="https://github.com/amisepa/BrainBeats/blob/main/figures/fig17.png">
47+
<img width="50%" alt="BrainBeats fig17"
48+
src="https://raw.githubusercontent.com/amisepa/BrainBeats/main/figures/fig17.png">
4349
</p>
4450

4551
2) Extract EEG and HRV features from continuous data in the time, frequency, and nonlinear domains.
@@ -55,49 +61,53 @@ The BrainBeats toolbox, implemented as an EEGLAB plugin, allows joint processing
5561
Example of power spectral density (PSD) estimated from HRV and EEG data
5662
</p>
5763
<p align="center" width="100%">
58-
<img width="50%" src="https://github.com/amisepa/BrainBeats/blob/main/figures/fig21.png">
64+
<img width="50%" alt="BrainBeats fig21"
65+
src="https://raw.githubusercontent.com/amisepa/BrainBeats/main/figures/fig21.png">
5966
</p>
6067

6168
<p align="center">
6269
Example of EEG features extracted from sample dataset
6370
</p>
6471
<p align="center" width="100%">
65-
<img width="50%" src="https://github.com/amisepa/BrainBeats/blob/main/figures/fig22.png">
72+
<img width="50%" alt="BrainBeats fig22"
73+
src="https://raw.githubusercontent.com/amisepa/BrainBeats/main/figures/fig22.png">
6674
</p>
6775

68-
6976
3) Remove heart components from EEG signals using ICA and ICLabel.
7077

7178
<p align="center">
7279
Example of extraction of cardiovascular components from EEG signals
7380
</p>
7481
<p align="center" width="100%">
75-
<img width="50%" src="https://github.com/amisepa/BrainBeats/blob/main/figures/fig27.png">
82+
<img width="50%" alt="BrainBeats fig27"
83+
src="https://raw.githubusercontent.com/amisepa/BrainBeats/main/figures/fig27.png">
7684
</p>
7785

78-
7986
4) Compute brain-heart coherence (beta version, please test and give feedback)
8087

8188
<p align="center">
8289
Example of several brain-heart coherence measures computed with BrainBeats from simultaneous EEG and ECG signals
8390
</p>
8491
<p align="center" width="100%">
85-
<img width="50%" src="https://github.com/amisepa/BrainBeats/blob/main/figures/coherence_allfreqs.png">
92+
<img width="50%" alt="BrainBeats coh_all"
93+
src="https://raw.githubusercontent.com/amisepa/BrainBeats/main/figures/coherence_allfreqs.png">
8694
</p>
8795

8896
<p align="center">
8997
Scalp topography showing scalp regions coherent with ECG signal for each frequency band
9098
</p>
9199
<p align="center" width="100%">
92-
<img width="50%" src="https://github.com/amisepa/BrainBeats/blob/main/figures/coherence_topo.png">
100+
<img width="50%" alt="BrainBeats coh_topo"
101+
src="https://raw.githubusercontent.com/amisepa/BrainBeats/main/figures/coherence_topo.png">
93102
</p>
94103

104+
95105
## Requirements
96106

97107
- MATLAB installed (https://www.mathworks.com/downloads)
98108
- EEGLAB installed (https://github.com/sccn/eeglab)
99109
- Some data containing EEG and cardiovascular signals (ECG or PPG) within the same file (i.e. recorded simultaneously).
100-
Or use the tutorial dataset provided in this repository located in the "sample_data" folder.
110+
Or use the tutorial dataset provided in this repository located in the "sample_data" folder. Source: sub-32 in https://nemar.org/dataexplorer/detail?dataset_id=ds003838
101111

102112
## Step-by-step tutorial
103113

@@ -110,3 +120,46 @@ Full-text preprint: https://www.biorxiv.org/content/10.1101/2023.06.01.543272v3.
110120
v1.5 (5/2/2024) - METHOD 4 (brain-heart coherence) added
111121

112122
v1.4 (4/1/2024) - publication JoVE (methods 1, 2, 3)
123+
124+
## When using BrainBeats, please cite:
125+
126+
Cannard, C., Wahbeh, H., & Delorme, A. (2024). BrainBeats as an Open-Source EEGLAB Plugin to Jointly Analyze EEG and Cardiovascular Signals. Journal of visualized experiments: JoVE, (206).
127+
128+
129+
## BrainBeats was used and cited in:
130+
131+
Carbone, F., Silva, M., Leemann, B., Hund-Georgiadis, M., & Hediger, K. (2025). Registered Report Stage I: Neurological and physiological effects of animal-assisted treatments for patients in a minimally conscious state: a randomized, controlled cross-over study. Neuroscience.
132+
133+
Balasubramanian, K. et al. (2025). Complexity Measures in Biomedical Signal Analysis: A Clinically-Grounded Survey Across EEG, ECG, Intracranial Pressure, and Photoplethysmogram Modalities. IEEE Access.
134+
135+
Park, S. et al. (2025). Improving single-trial detection of error-related potentials by considering the effect of heartbeat-evoked potentials in a motor imagery-based brain-computer interface. Computers in Biology and Medicine, 195, 110563.
136+
137+
Abdullah, J. et al. (2025). Mathematical Decoding of the Correlation Between Different Organs' Activities: A Review. Fractals.
138+
139+
Carbone, F. et al. (2025). Registered Report Stage I: Neurological and physiological effects of animal-assisted treatments for patients in a minimally conscious state: a randomized, controlled cross-over study. Neuroscience.
140+
141+
Remiszewski, M. (2025). Long-term Aerobic Exercise Enhances Interoception and Reduces Symptoms of Depression and Anxiety in Physically Inactive Young Adults: A Randomized Controlled Trial. Psychology of Sport and Exercise, 102939.
142+
143+
Chowdhury, et al. (2025). Neural Signals, Machine Learning, and the Future of Inner Speech Recognition. Frontiers in Human Neuroscience, 19, 1637174.
144+
145+
Naaz, R., & Ahmad, S. (2025). ECG Data Mining Approach for Detection of Arrhythmia Using Machine Learning. In 2025 3rd International Conference on Device Intelligence, Computing and Communication Technologies (DICCT) (pp. 52-57). IEEE.
146+
147+
Cheng, X., Maess, B., & Schirmer, A. (2025). A Pleasure That Lasts: Convergent neural processes underpin comfort with prolonged gentle stroking. Cortex.
148+
149+
Georgaras, E., & Vourvopoulos, A. (2025). Physiological assessment of brain, cardiovascular, and respiratory changes in multimodal motor imagery brain-computer interface training. Research in Biomedical Engineering and Technology, 12(1), 2471680.
150+
151+
Park, S., Ha, J., & Kim, L. (2025). Improving single-trial detection of error-related potentials by considering the effect of heartbeat-evoked potentials in a motor imagery-based brain-computer interface. Computers in Biology and Medicine, 195, 110563.
152+
153+
Perez, T. M., Drake, E., & Sullivan, S. (2024). Assessing central nervous system and peripheral nervous system functioning in resting and non-resting conditions in a healthy adult population: A feasibility study. Chiropractic Journal of Australia (Online), 51(1), 1-32.
154+
155+
Akuthota, S., Rajkumar, K., & Janapati, R. (2024). Intelligent EEG Artifact Removal in Motor ImageryBCI: Synergizing FCIF, FCFBCSP, and Modified DNN with SNR, PSD, and Spectral Coherence Evaluation. In 2024 International Conference on Circuit, Systems and Communication (ICCSC) IEEE.
156+
157+
Ingolfsson et al. (2024). Brainfusenet: Enhancing wearable seizure detection through eeg-ppg-accelerometer sensor fusion and efficient edge deployment. IEEE Transactions on Biomedical Circuits and Systems.
158+
159+
Fields, C., et al. (2024). Search for entanglement between spatially separated Living systems: Experiment design, results, and lessons learned. Biophysica, 4(2), 168-181.
160+
161+
Cannard, C., Delorme, A., & Wahbeh, H. (2024). Identifying HRV and EEG correlates of well-being using ultra-short, portable, and low-cost measurements. bioRxiv, 2024-02.
162+
163+
Arao, H., Suwazono, S., Kimura, A., Asano, H., & Suzuki, H. (2023). Measuring auditory event‐related potentials at the external ear canal: A demonstrative study using a new electrode and error‐feedback paradigm. European Journal of Neuroscience, 58(11), 4310-4327.
164+
165+
Goodwin, A. J., et al. (2023). The truth Hertz—synchronization of electroencephalogram signals with physiological waveforms recorded in an intensive care unit. Physiological Measurement, 44(8), 085002.

0 commit comments

Comments
 (0)