Skip to content
/ numba Public
forked from sklam/numba

NumPy aware dynamic Python compiler using LLVM

License

Notifications You must be signed in to change notification settings

scchan/numba

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Numba

Numba is an Open Source NumPy-aware optimizing compiler for Python sponsored by Continuum Analytics, Inc. It uses the remarkable LLVM compiler infrastructure to compile Python syntax to machine code.

It is aware of NumPy arrays as typed memory regions and so can speed-up code using NumPy arrays. Other, less well-typed code will be translated to Python C-API calls effectively removing the "interpreter" but not removing the dynamic indirection.

Numba is also not a tracing jit. It compiles your code before it gets run either using run-time type information or type information you provide in the decorator.

Numba is a mechanism for producing machine code from Python syntax and typed data structures such as those that exist in NumPy.

Dependencies

  • LLVM 3.3
  • llvmpy (from llvmpy/llvmpy fork)
  • numpy (version 1.6 or higher)
  • argparse (for pycc in python2.6)

Installing

The easiest way to install numba and get updates is by using the Anaconda Distribution: https://store.continuum.io/cshop/anaconda/

$ conda install numba

If you wanted to compile Numba from source, it is recommended to use conda environment to maintain multiple isolated development environments. To create a new environment for Numba development:

$ conda create -p ~/dev/mynumba python numpy llvmpy

To select the installed version, append "=VERSION" to the package name, where, "VERSION" is the version number. For example:

$ conda create -p ~/dev/mynumba python=2.7 numpy=1.6 llvmpy

to use Python 2.7 and Numpy 1.6.

Custom Python Environments

If you're not using anaconda, you will need LLVM with RTTI enabled:

  • Compile LLVM 3.3

See https://github.com/llvmpy/llvmpy for the most up-to-date instructions.

$ wget http://llvm.org/releases/3.3/llvm-3.3.src.tar.gz
$ tar zxvf llvm-3.3.src.tar.gz
$ cd llvm-3.3.src
$ ./configure --enable-optimized --prefix=LLVM_BUILD_DIR
$ # It is recommended to separate the custom build from the default system
$ # package.
$ # Be sure your compiler architecture is same as version of Python you will use
$ #  e.g. -arch i386 or -arch x86_64.  It might be best to be explicit about this.
$ REQUIRES_RTTI=1 make install
  • Install llvmpy
$ git clone https://github.com/llvmpy/llvmpy
$ cd llvmpy
$ LLVM_CONFIG_PATH=LLVM_BUILD_DIR/bin/llvm-config python setup.py install
  • Installing Numba
$ git clone https://github.com/numba/numba.git
$ cd numba
$ pip install -r requirements.txt
$ python setup.py build_ext --inplace
$ python setup.py install

or simply

$ pip install numba

NOTE: Make sure you install distribute instead of setuptools. Using setuptools may mean that source files do not get cythonized and may result in an error during installation.

If you want to enable CUDA support, you will need CUDA Toolkit 5.5+ (which contains libnvvm). After installing the Toolkit, you might have to specify a few environment variables according to http://numba.pydata.org/numba-doc/0.13/CUDASupport.html

Documentation

http://numba.pydata.org/numba-doc/dev/index.html

Mailing Lists

Join the numba mailing list numba-users@continuum.io :

https://groups.google.com/a/continuum.io/d/forum/numba-users

Some old archives are at: http://librelist.com/browser/numba/

Website

See if our sponsor can help you (which can help this project): http://www.continuum.io

http://numba.pydata.org

Continuous Integration

https://travis-ci.org/numba/numba

About

NumPy aware dynamic Python compiler using LLVM

Resources

License

Stars

Watchers

Forks

Packages

No packages published