forked from mohitmore2001/Farmers-Friend
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
177 lines (136 loc) · 5.82 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# Importing essential libraries and modules
from flask import Flask, render_template, request, Markup,redirect
import numpy as np
import pandas as pd
from utils.disease import disease_dic
import requests
import pickle
import io
import torch
from torchvision import transforms
from PIL import Image
from utils.model import ResNet9
# ==============================================================================================
# -------------------------LOADING THE TRAINED MODELS -----------------------------------------------
# Loading plant disease classification model
disease_classes = ['Apple___Apple_scab',
'Apple___Black_rot',
'Apple___Cedar_apple_rust',
'Apple___healthy',
'Blueberry___healthy',
'Cherry_(including_sour)___Powdery_mildew',
'Cherry_(including_sour)___healthy',
'Corn_(maize)___Cercospora_leaf_spot Gray_leaf_spot',
'Corn_(maize)___Common_rust_',
'Corn_(maize)___Northern_Leaf_Blight',
'Corn_(maize)___healthy',
'Grape___Black_rot',
'Grape___Esca_(Black_Measles)',
'Grape___Leaf_blight_(Isariopsis_Leaf_Spot)',
'Grape___healthy',
'Orange___Haunglongbing_(Citrus_greening)',
'Peach___Bacterial_spot',
'Peach___healthy',
'Pepper,_bell___Bacterial_spot',
'Pepper,_bell___healthy',
'Potato___Early_blight',
'Potato___Late_blight',
'Potato___healthy',
'Raspberry___healthy',
'Soybean___healthy',
'Squash___Powdery_mildew',
'Strawberry___Leaf_scorch',
'Strawberry___healthy',
'Tomato___Bacterial_spot',
'Tomato___Early_blight',
'Tomato___Late_blight',
'Tomato___Leaf_Mold',
'Tomato___Septoria_leaf_spot',
'Tomato___Spider_mites Two-spotted_spider_mite',
'Tomato___Target_Spot',
'Tomato___Tomato_Yellow_Leaf_Curl_Virus',
'Tomato___Tomato_mosaic_virus',
'Tomato___healthy']
disease_model_path = 'models/plant_disease_model.pth'
disease_model = ResNet9(3, len(disease_classes))
disease_model.load_state_dict(torch.load(
disease_model_path, map_location=torch.device('cpu')))
disease_model.eval()
# Loading crop recommendation model
crop_recommendation_model_path = 'models/RandomForest.pkl'
crop_recommendation_model = pickle.load(
open(crop_recommendation_model_path, 'rb'))
# =========================================================================================
# Custom functions for calculations
def predict_image(img, model=disease_model):
"""
Transforms image to tensor and predicts disease label
:params: image
:return: prediction (string)
"""
transform = transforms.Compose([
transforms.Resize(256),
transforms.ToTensor(),
])
image = Image.open(io.BytesIO(img))
img_t = transform(image)
img_u = torch.unsqueeze(img_t, 0)
# Get predictions from model
yb = model(img_u)
# Pick index with highest probability
_, preds = torch.max(yb, dim=1)
prediction = disease_classes[preds[0].item()]
# Retrieve the class label
return prediction
# ===============================================================================================
# ------------------------------------ FLASK APP -------------------------------------------------
app = Flask(__name__)
# render home page
@ app.route('/')
def home():
title = 'Farmers Friend - Home'
return render_template('index.html', title=title)
# render crop recommendation form page
@ app.route('/crop-recommend')
def crop_recommend():
title = 'Farmers Friend - Crop Recommendation'
return render_template('crop.html', title=title)
# ===============================================================================================
# RENDER PREDICTION PAGES
# render crop recommendation result page
@ app.route('/crop-predict', methods=['POST'])
def crop_prediction():
title = 'Farmers Friend- Crop Recommendation'
if request.method == 'POST':
N = int(request.form['nitrogen'])
P = int(request.form['phosphorous'])
K = int(request.form['pottasium'])
temperature = float(request.form['temperature'])
humidity = float(request.form['humidity'])
ph = float(request.form['ph'])
rainfall = float(request.form['rainfall'])
data = np.array([[N, P, K, temperature, humidity, ph, rainfall]])
my_prediction = crop_recommendation_model.predict(data)
final_prediction = my_prediction[0]
return render_template('crop-result.html', prediction=final_prediction, title=title)
# render disease prediction result page
@app.route('/disease-predict', methods=['GET', 'POST'])
def disease_prediction():
title = 'Farmers Friend - Disease Detection'
if request.method == 'POST':
if 'file' not in request.files:
return redirect(request.url)
file = request.files.get('file')
if not file:
return render_template('disease.html', title=title)
try:
img = file.read()
prediction = predict_image(img)
prediction = Markup(str(disease_dic[prediction]))
return render_template('disease-result.html', prediction=prediction, title=title)
except:
pass
return render_template('disease.html', title=title)
# ===============================================================================================
if __name__ == '__main__':
app.run(debug=False)