Skip to content

Commit 8a3cc5f

Browse files
authored
Merge pull request #409 from kybowm/master
Update README.md
2 parents 9abd05f + 0ce288c commit 8a3cc5f

File tree

1 file changed

+58
-56
lines changed

1 file changed

+58
-56
lines changed

README.md

Lines changed: 58 additions & 56 deletions
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@
77
<img src="https://img.shields.io/badge/SAS%20Viya-4.0-blue.svg?&colorA=0b5788&style=for-the-badge&logoWidth=30&logo="
88
alt="SAS Viya Version"/>
99
</a>
10-
10+
1111
<a href="https://www.sas.com/en_us/software/visual-data-mining-machine-learning.html">
1212
<img src="https://img.shields.io/badge/pip_install_sas_dlpy-blue.svg?&style=for-the-badge&colorA=254f73" alt="Python Version">
1313

@@ -19,30 +19,34 @@
1919
</div>
2020

2121
### Overview
22-
DLPy is a high-level Python library for the SAS Deep learning features
23-
available in SAS Viya. DLPy is designed to provide an efficient way to
24-
apply deep learning methods to image, text, and audio data. DLPy APIs
25-
are created following the [Keras](https://keras.io/) APIs with a touch
22+
23+
DLPy is a high-level Python library for the SAS Deep learning features
24+
available in SAS Viya. DLPy is designed to provide an efficient way to
25+
apply deep learning methods to image, text, and audio data. DLPy APIs
26+
are created following the [Keras](https://keras.io/) APIs with a touch
2627
of [PyTorch](https://pytorch.org/) flavor.
2728

28-
### What's Recently Added
29-
* DLModelzoo action support
30-
* Real-time plot for hyper-parameter tuning with DLModelzoo
31-
* New examples for APIs with DLModelzoo
32-
* PNG/base64 output format for segmentation models
33-
* Additional pre-defined network architectures such as ENet and Efficient-Net
29+
### Recently Added Features
30+
31+
* DLPy now supports the DLModelzoo action through the use of `MZModel`.
32+
* Real-time plots for hyper-parameter tuning are available with DLModelzoo.
33+
* New examples are available for APIs with DLModelzoo.
34+
* Segmentation models can produce PNG/base64 output.
35+
* Additional pre-defined network architectures are available. Examples include ENet and Efficient-Net.
3436

3537
### Prerequisites
36-
- Python version 3.3 or greater is required
37-
- Install SAS [Scripting Wrapper for Analytics Transfer (SWAT)](https://github.com/sassoftware/python-swat) for Python using `pip install swat` or `conda install -c sas-institute swat`
38-
- Access to a SAS Viya 4.0 environment with [Visual Data Mining and Machine Learning](https://www.sas.com/en_us/software/visual-data-mining-machine-learning.html) (VDMML) is required
39-
- To use timeseries APIs, access to either [SAS Econometrics](https://www.sas.com/en_us/software/econometrics.html) or [SAS Visual Forecasting](https://www.sas.com/en_us/software/visual-forecasting.html) is required
40-
- A user login to your SAS Viya back-end is required. See your system administrator for details if you do not have a SAS Viya account.
41-
- It is recommended that you install the open source graph visualization software called [Graphviz](https://www.graphviz.org/download/) to enable graphic visualizations of the DLPy deep learning models
42-
- Install DLPy using `pip install sas-dlpy` or `conda install -c sas-institute sas-dlpy`
43-
44-
#### SAS Viya and VDMML versions vs. DLPY versions
45-
DLPy versions are aligned with the SAS Viya and VDMML versions.
38+
39+
* You must use Python version 3.3 or greater.
40+
* You must install SAS [Scripting Wrapper for Analytics Transfer (SWAT)](https://github.com/sassoftware/python-swat) for Python. You can install the package from PyPI by using the command `pip install swat` or from the SAS conda repository by using `conda install -c sas-institute swat`.
41+
* You must have access to a SAS Viya 4.0 environment that has [Machine Learning](https://www.sas.com/en_us/software/machine-learning-deep-learning.html) licensed.
42+
* To use time series APIs, you must have access to either [SAS Econometrics](https://www.sas.com/en_us/software/econometrics.html) or [SAS Visual Forecasting](https://www.sas.com/en_us/software/visual-forecasting.html).
43+
* You must have a user login to your SAS Viya back-end. See your system administrator for details if you do not have a SAS Viya account.
44+
* It is recommended that you install the open source graph visualization software called [Graphviz](https://www.graphviz.org/download/) to enable graphic visualizations of the DLPy deep learning models.
45+
* Install DLPy using `pip install sas-dlpy` or `conda install -c sas-institute sas-dlpy`.
46+
47+
#### SAS Viya and DLPY Versions
48+
49+
DLPy versions are aligned with SAS Viya versions.
4650
Below is the versions matrix.
4751

4852
<table>
@@ -74,11 +78,12 @@ Below is the versions matrix.
7478
The table above can be read as follows: DLPy versions between 1.0 (inclusive)
7579
to 1.1 (exclusive) are designed to work with the SAS Viya 3.4.
7680

77-
#### External Libraries ####
81+
#### External Libraries
82+
7883
The following versions of external libraries are supported:
79-
- ONNX: versions >= 1.5.0
80-
- Keras: versions >= 2.1.3
8184

85+
* ONNX: versions >= 1.5.0
86+
* Keras: versions >= 2.1.3
8287

8388
### Getting Started
8489

@@ -90,7 +95,7 @@ Note: The default CAS port is 5570.
9095
>>> import swat
9196
>>> sess = swat.CAS('mycloud.example.com', 5570)
9297

93-
Next, import the DLPy package, and then build a simple convolutional
98+
Next, import the DLPy package, and then build a simple convolutional
9499
neural network (CNN) model.
95100

96101
Import DLPy model functions:
@@ -111,7 +116,7 @@ Define an input layer to add to `model1`:
111116

112117
NOTE: Input layer added.
113118

114-
Add a 2D convolution layer and a pooling layer:
119+
Add a 2-D convolution layer and a pooling layer:
115120

116121
# Add 2-Dimensional Convolution Layer to model1
117122
# that has 8 filters and a kernel size of 7.
@@ -125,8 +130,8 @@ Add a 2D convolution layer and a pooling layer:
125130
>>> model1.add(Pooling(2))
126131

127132
NOTE: Pooling layer added.
128-
129-
Add an additional pair of 2D convolution and pooling layers:
133+
134+
Add an additional pair of 2-D convolution and pooling layers:
130135

131136
# Add another 2D convolution Layer that has 8 filters and a kernel size of 7
132137

@@ -139,15 +144,15 @@ Add an additional pair of 2D convolution and pooling layers:
139144
>>> model1.add(Pooling(2))
140145

141146
NOTE: Pooling layer added.
142-
147+
143148
Add a fully connected layer:
144149

145150
# Add Fully-Connected Layer with 16 units
146151

147152
>>> model1.add(Dense(16))
148153

149154
NOTE: Fully-connected layer added.
150-
155+
151156
Finally, add the output layer:
152157

153158
# Add an output layer that has 2 nodes and uses
@@ -158,38 +163,35 @@ Finally, add the output layer:
158163
NOTE: Output layer added.
159164
NOTE: Model compiled successfully
160165

161-
162166
### Additional Resources
163-
- DLPy examples: https://github.com/sassoftware/python-dlpy/tree/master/examples
164-
- DLPy API documentation [sassoftware.github.io/python-dlpy](https://sassoftware.github.io/python-dlpy/).
165-
- [SAS SWAT for Python](http://github.com/sassoftware/python-swat/)
166-
- [SAS ESPPy](https://github.com/sassoftware/python-esppy)
167-
- Watch: DLPy videos:
167+
168+
* DLPy examples: <https://github.com/sassoftware/python-dlpy/tree/master/examples>
169+
* DLPy API documentation [sassoftware.github.io/python-dlpy](https://sassoftware.github.io/python-dlpy/).
170+
* [SAS SWAT for Python](http://github.com/sassoftware/python-swat/)
171+
* [SAS ESPPy](https://github.com/sassoftware/python-esppy)
172+
* Watch: DLPy videos:
168173
* DLPy v1.0 examples:
169-
* [Image classification using CNNs](https://www.youtube.com/watch?v=RJ0gbsB7d_8&start=125)
170-
* [Object detection using TinyYOLOv2](https://www.youtube.com/watch?v=RJ0gbsB7d_8&start=390)
171-
* [Import and export deep learning models with ONNX](https://www.youtube.com/watch?v=RJ0gbsB7d_8&start=627)
172-
* [Text classification and text generation using RNNs](https://www.youtube.com/watch?v=RJ0gbsB7d_8&start=943)
173-
* [Time series forecasting using RNNs](https://www.youtube.com/watch?v=RJ0gbsB7d_8&start=1185)
174+
* [Image classification using CNNs](https://www.youtube.com/watch?v=RJ0gbsB7d_8&start=125)
175+
* [Object detection using TinyYOLOv2](https://www.youtube.com/watch?v=RJ0gbsB7d_8&start=390)
176+
* [Import and export deep learning models with ONNX](https://www.youtube.com/watch?v=RJ0gbsB7d_8&start=627)
177+
* [Text classification and text generation using RNNs](https://www.youtube.com/watch?v=RJ0gbsB7d_8&start=943)
178+
* [Time series forecasting using RNNs](https://www.youtube.com/watch?v=RJ0gbsB7d_8&start=1185)
174179
* DLPy v1.1 examples:
175-
* [Leverage Functional APIs to Build Complex Models](https://www.youtube.com/watch?v=guCDi2C-mNQ&t=115s)
176-
* [Image Segmentation with U-Net](https://www.youtube.com/watch?v=guCDi2C-mNQ&t=399s)
177-
* [Object Detection with Faster-RCNN](https://www.youtube.com/watch?v=guCDi2C-mNQ&t=688s)
178-
* [Image Classification with ShuffleNet and MobileNet](https://www.youtube.com/watch?v=guCDi2C-mNQ&t=1158s)
179-
* [Multi-class Deep learning](https://www.youtube.com/watch?v=guCDi2C-mNQ&t=1648s)
180-
- [SAS Deep Learning with Python made easy using DLPy](https://blogs.sas.com/content/subconsciousmusings/2019/03/13/sas-deep-learning-with-python-made-easy-using-dlpy/)
180+
* [Leverage Functional APIs to Build Complex Models](https://www.youtube.com/watch?v=guCDi2C-mNQ&t=115s)
181+
* [Image Segmentation with U-Net](https://www.youtube.com/watch?v=guCDi2C-mNQ&t=399s)
182+
* [Object Detection with Faster-RCNN](https://www.youtube.com/watch?v=guCDi2C-mNQ&t=688s)
183+
* [Image Classification with ShuffleNet and MobileNet](https://www.youtube.com/watch?v=guCDi2C-mNQ&t=1158s)
184+
* [Multi-class Deep learning](https://www.youtube.com/watch?v=guCDi2C-mNQ&t=1648s)
185+
* [SAS Deep Learning with Python made easy using DLPy](https://blogs.sas.com/content/subconsciousmusings/2019/03/13/sas-deep-learning-with-python-made-easy-using-dlpy/)
181186

182187
### Contributing
183-
Have something cool to share? SAS gladly accepts pull requests on GitHub! See the [Contributor Agreement](https://github.com/sassoftware/python-dlpy/blob/master/ContributorAgreement.txt) for details.
184-
185-
### Licensing
186-
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License.
187-
You may obtain a copy of the License at [LICENSE.txt](https://github.com/sassoftware/python-dlpy/blob/master/LICENSE.txt)
188-
189-
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS,
190-
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
191188

189+
Have something cool to share? We gladly accept pull requests on GitHub! See the [Contributor Agreement](https://github.com/sassoftware/python-dlpy/blob/master/ContributorAgreement.txt) for details.
192190

191+
### Licensing
193192

193+
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License.
194+
You can obtain a copy of the License at [LICENSE.txt](https://github.com/sassoftware/python-dlpy/blob/master/LICENSE.txt)
194195

195-
### for more products do visit our github and contribute.
196+
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS,
197+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

0 commit comments

Comments
 (0)