|
| 1 | +/* Author :SUBHAM SANGHAI |
| 2 | +A Java program for Dijkstra's single source shortest path algorithm, |
| 3 | +where given a graph and a source vertex in graph, we have to find |
| 4 | +shortest paths from source to all vertices in the given graph. |
| 5 | +The program is for adjacency matrix representation of the graph*/ |
| 6 | +import java.util.*; |
| 7 | +import java.lang.*; |
| 8 | +import java.io.*; |
| 9 | +class Dijkstra |
| 10 | +{ |
| 11 | + |
| 12 | + private static final int V=5; |
| 13 | + |
| 14 | + /*A utility function to find the vertex with minimum distance value, |
| 15 | + from the set of vertices not yet included in shortest path tree*/ |
| 16 | + int minDistance(int dist[], Boolean sptSet[]) |
| 17 | + { |
| 18 | + // Initialize min value |
| 19 | + int min = Integer.MAX_VALUE, min_index=-1; |
| 20 | + |
| 21 | + for (int v = 0; v < V; v++) |
| 22 | + if (sptSet[v] == false && dist[v] <= min) |
| 23 | + { |
| 24 | + min = dist[v]; |
| 25 | + min_index = v; |
| 26 | + } |
| 27 | + |
| 28 | + return min_index; |
| 29 | + } |
| 30 | + |
| 31 | + |
| 32 | + |
| 33 | + // A utility function to print the constructed distance array |
| 34 | + void printSolution(int dist[], int n) |
| 35 | + { |
| 36 | + System.out.println("Vertex | Distance from Source"); |
| 37 | + System.out.println("------- | ---------------------"); |
| 38 | + for (int i = 0; i < V; i++) |
| 39 | + System.out.println(i+" | "+dist[i]); |
| 40 | + } |
| 41 | + |
| 42 | + |
| 43 | + |
| 44 | + |
| 45 | + /*Function that implements Dijkstra's single source shortest path |
| 46 | + algorithm for a graph represented using adjacency matrix |
| 47 | + representation*/ |
| 48 | + void dijkstra(int graph[][], int src) |
| 49 | + { |
| 50 | + int dist[] = new int[V]; |
| 51 | + /*The output array. dist[i] will hold |
| 52 | + the shortest distance from src to i*/ |
| 53 | + /* sptSet[i] will true if vertex i is included in shortest |
| 54 | + path tree or shortest distance from src to i is finalized*/ |
| 55 | + Boolean sptSet[] = new Boolean[V]; |
| 56 | + // Initialize all distances as INFINITE and stpSet[] as false |
| 57 | + for (int i = 0; i < V; i++) |
| 58 | + { |
| 59 | + dist[i] = Integer.MAX_VALUE; |
| 60 | + sptSet[i] = false; |
| 61 | + } |
| 62 | + // Distance of source vertex from itself is always 0 |
| 63 | + dist[src] = 0; |
| 64 | + // Find shortest path for all vertices |
| 65 | + for (int count = 0; count < V-1; count++) |
| 66 | + { |
| 67 | + /* Pick the minimum distance vertex from the set of vertices |
| 68 | + not yet processed. u is always equal to src in first |
| 69 | + iteration.*/ |
| 70 | + int u = minDistance(dist, sptSet); |
| 71 | + // Mark the picked vertex as processed |
| 72 | + sptSet[u] = true; |
| 73 | + /*Update dist value of the adjacent vertices of the |
| 74 | + picked vertex.*/ |
| 75 | + for (int v = 0; v < V; v++) |
| 76 | + /* Update dist[v] only if is not in sptSet, there is an |
| 77 | + edge from u to v, and total weight of path from src to |
| 78 | + v through u is smaller than current value of dist[v]*/ |
| 79 | + if (!sptSet[v] && graph[u][v]!=0 && |
| 80 | + dist[u] != Integer.MAX_VALUE && |
| 81 | + dist[u]+graph[u][v] < dist[v]) |
| 82 | + dist[v] = dist[u] + graph[u][v]; |
| 83 | + } |
| 84 | + |
| 85 | + // print the constructed distance array |
| 86 | + printSolution(dist, V); |
| 87 | + } |
| 88 | + |
| 89 | + |
| 90 | + |
| 91 | + |
| 92 | + // Driver method |
| 93 | + public static void main (String[] args) |
| 94 | + { |
| 95 | + /* Let us create the following graph |
| 96 | + 2 3 |
| 97 | + (0)--(1)--(2) |
| 98 | + | / \ | |
| 99 | + 6| 8/ \5 |7 |
| 100 | + | / \ | |
| 101 | + (3)-------(4) |
| 102 | + 9 */ |
| 103 | + int graph[][] = new int[][] {{0, 2, 0, 6, 0}, |
| 104 | + {2, 0, 3, 8, 5}, |
| 105 | + {0, 3, 0, 0, 7}, |
| 106 | + {6, 8, 0, 0, 9}, |
| 107 | + {0, 5, 7, 9, 0}, |
| 108 | + }; |
| 109 | + Dijkstra t = new Dijkstra(); |
| 110 | + t.dijkstra(graph, 0); |
| 111 | + } |
| 112 | + |
| 113 | + |
| 114 | +} |
0 commit comments